Prime k-tupleIn number theory, a prime k-tuple is a finite collection of values representing a repeatable pattern of differences between prime numbers. For a k-tuple (a, b, ...), the positions where the k-tuple matches a pattern in the prime numbers are given by the set of integers n such that all of the values (n + a, n + b, ...) are prime. Typically the first value in the k-tuple is 0 and the rest are distinct positive even numbers. Several of the shortest k-tuples are known by other common names: OEIS sequence covers 7-tuples (prime septuplets) and contains an overview of related sequences, e.
Prime number theoremIn mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann (in particular, the Riemann zeta function).
Prime numberA prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4.
Elliptic curve primalityIn mathematics, elliptic curve primality testing techniques, or elliptic curve primality proving (ECPP), are among the quickest and most widely used methods in primality proving. It is an idea put forward by Shafi Goldwasser and Joe Kilian in 1986 and turned into an algorithm by A. O. L. Atkin the same year. The algorithm was altered and improved by several collaborators subsequently, and notably by Atkin and de, in 1993. The concept of using elliptic curves in factorization had been developed by H. W.
Prime quadrupletIn number theory, a prime quadruplet (sometimes called prime quadruple) is a set of four prime numbers of the form {p,\ p+2,\ p+6,\ p+8}. This represents the closest possible grouping of four primes larger than 3, and is the only prime constellation of length 4. The first eight prime quadruplets are: {5, 7, 11, 13}, {11, 13, 17, 19}, {101, 103, 107, 109}, {191, 193, 197, 199}, {821, 823, 827, 829}, {1481, 1483, 1487, 1489}, {1871, 1873, 1877, 1879}, {2081, 2083, 2087, 2089} All prime quadruplets except {5, 7, 11, 13} are of the form {30n + 11, 30n + 13, 30n + 17, 30n + 19} for some integer n.
Formula for primesIn number theory, a formula for primes is a formula generating the prime numbers, exactly and without exception. No such formula which is efficiently computable is known. A number of constraints are known, showing what such a "formula" can and cannot be. A simple formula is for positive integer , where is the floor function, which rounds down to the nearest integer. By Wilson's theorem, is prime if and only if . Thus, when is prime, the first factor in the product becomes one, and the formula produces the prime number .
Sexy primeIn number theory, sexy primes are prime numbers that differ from each other by 6. For example, the numbers 5 and 11 are both sexy primes, because both are prime and 11 − 5 = 6. The term "sexy prime" is a pun stemming from the Latin word for six: sex. If p + 2 or p + 4 (where p is the lower prime) is also prime, then the sexy prime is part of a prime triplet.
Lossy compressionIn information technology, lossy compression or irreversible compression is the class of data compression methods that uses inexact approximations and partial data discarding to represent the content. These techniques are used to reduce data size for storing, handling, and transmitting content. The different versions of the photo of the cat on this page show how higher degrees of approximation create coarser images as more details are removed. This is opposed to lossless data compression (reversible data compression) which does not degrade the data.
Fractal compressionFractal compression is a lossy compression method for s, based on fractals. The method is best suited for textures and natural images, relying on the fact that parts of an image often resemble other parts of the same image. Fractal algorithms convert these parts into mathematical data called "fractal codes" which are used to recreate the encoded image. Iterated function system Fractal image representation may be described mathematically as an iterated function system (IFS).
Key exchangeKey exchange (also key establishment) is a method in cryptography by which cryptographic keys are exchanged between two parties, allowing use of a cryptographic algorithm. If the sender and receiver wish to exchange encrypted messages, each must be equipped to encrypt messages to be sent and decrypt messages received. The nature of the equipping they require depends on the encryption technique they might use. If they use a code, both will require a copy of the same codebook. If they use a cipher, they will need appropriate keys.