Quadruple-precision floating-point formatIn computing, quadruple precision (or quad precision) is a binary floating point–based computer number format that occupies 16 bytes (128 bits) with precision at least twice the 53-bit double precision. This 128-bit quadruple precision is designed not only for applications requiring results in higher than double precision, but also, as a primary function, to allow the computation of double precision results more reliably and accurately by minimising overflow and round-off errors in intermediate calculations and scratch variables.
Arithmetic logic unitIn computing, an arithmetic logic unit (ALU) is a combinational digital circuit that performs arithmetic and bitwise operations on integer binary numbers. This is in contrast to a floating-point unit (FPU), which operates on floating point numbers. It is a fundamental building block of many types of computing circuits, including the central processing unit (CPU) of computers, FPUs, and graphics processing units (GPUs).
ArithmeticArithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers—addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th century, Italian mathematician Giuseppe Peano formalized arithmetic with his Peano axioms, which are highly important to the field of mathematical logic today.
Quantum Fourier transformIn quantum computing, the quantum Fourier transform (QFT) is a linear transformation on quantum bits, and is the quantum analogue of the discrete Fourier transform. The quantum Fourier transform is a part of many quantum algorithms, notably Shor's algorithm for factoring and computing the discrete logarithm, the quantum phase estimation algorithm for estimating the eigenvalues of a unitary operator, and algorithms for the hidden subgroup problem. The quantum Fourier transform was discovered by Don Coppersmith.
Ring of integersIn mathematics, the ring of integers of an algebraic number field is the ring of all algebraic integers contained in . An algebraic integer is a root of a monic polynomial with integer coefficients: . This ring is often denoted by or . Since any integer belongs to and is an integral element of , the ring is always a subring of . The ring of integers is the simplest possible ring of integers. Namely, where is the field of rational numbers. And indeed, in algebraic number theory the elements of are often called the "rational integers" because of this.
Fixed-point arithmeticIn computing, fixed-point is a method of representing fractional (non-integer) numbers by storing a fixed number of digits of their fractional part. Dollar amounts, for example, are often stored with exactly two fractional digits, representing the cents (1/100 of dollar). More generally, the term may refer to representing fractional values as integer multiples of some fixed small unit, e.g. a fractional amount of hours as an integer multiple of ten-minute intervals.
Algebraic integerIn algebraic number theory, an algebraic integer is a complex number which is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficients are integers. The set of all algebraic integers A is closed under addition, subtraction and multiplication and therefore is a commutative subring of the complex numbers. The ring of integers of a number field K, denoted by OK, is the intersection of K and A: it can also be characterised as the maximal order of the field K.
Root of unityIn mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power n. Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group characters, and the discrete Fourier transform. Roots of unity can be defined in any field. If the characteristic of the field is zero, the roots are complex numbers that are also algebraic integers.
Accuracy and precisionAccuracy and precision are two measures of observational error. Accuracy is how close a given set of measurements (observations or readings) are to their true value, while precision is how close the measurements are to each other. In other words, precision is a description of random errors, a measure of statistical variability. Accuracy has two definitions: More commonly, it is a description of only systematic errors, a measure of statistical bias of a given measure of central tendency; low accuracy causes a difference between a result and a true value; ISO calls this trueness.
Chinese remainder theoremIn mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition that the divisors are pairwise coprime (no two divisors share a common factor other than 1). For example, if we know that the remainder of n divided by 3 is 2, the remainder of n divided by 5 is 3, and the remainder of n divided by 7 is 2, then without knowing the value of n, we can determine that the remainder of n divided by 105 (the product of 3, 5, and 7) is 23.