**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Ring of integers

Summary

In mathematics, the ring of integers of an algebraic number field is the ring of all algebraic integers contained in . An algebraic integer is a root of a monic polynomial with integer coefficients: . This ring is often denoted by or . Since any integer belongs to and is an integral element of , the ring is always a subring of .
The ring of integers is the simplest possible ring of integers. Namely, where is the field of rational numbers. And indeed, in algebraic number theory the elements of are often called the "rational integers" because of this.
The next simplest example is the ring of Gaussian integers , consisting of complex numbers whose real and imaginary parts are integers. It is the ring of integers in the number field of Gaussian rationals, consisting of complex numbers whose real and imaginary parts are rational numbers. Like the rational integers, is a Euclidean domain.
The ring of integers of an algebraic number field is the unique maximal order in the field. It is always a Dedekind domain.
The ring of integers OK is a finitely-generated Z-module. Indeed, it is a free Z-module, and thus has an integral basis, that is a basis b1, ..., bn ∈ OK of the Q-vector space K such that each element x in OK can be uniquely represented as
with ai ∈ Z. The rank n of OK as a free Z-module is equal to the degree of K over Q.
A useful tool for computing the integral closure of the ring of integers in an algebraic field K/Q is the discriminant. If K is of degree n over Q, and form a basis of K over Q, set . Then, is a submodule of the Z-module spanned by . pg. 33 In fact, if d is square-free, then forms an integral basis for . pg. 35
If p is a prime, ζ is a pth root of unity and K = Q(ζ ) is the corresponding cyclotomic field, then an integral basis of OK = Z[ζ] is given by (1, ζ, ζ 2, ..., ζ p−2).
If is a square-free integer and is the corresponding quadratic field, then is a ring of quadratic integers and its integral basis is given by (1, (1 + ) /2) if d ≡ 1 (mod 4) and by (1, ) if d ≡ 2, 3 (mod 4).

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (63)

Related courses (16)

Related MOOCs (2)

CS-101: Advanced information, computation, communication I

Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a

MATH-482: Number theory I.a - Algebraic number theory

Algebraic number theory is the study of the properties of solutions of polynomial equations with integral coefficients; Starting with concrete problems, we then introduce more general notions like alg

CS-119(c): Information, Computation, Communication

L'objectif de ce cours est d'introduire les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'Informatique et de développer une première compétence en programmation (

Information, Calcul, Communication: Introduction à la pensée informatique

Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d

Information, Calcul, Communication: Introduction à la pensée informatique

Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d

Algebraic number field

In mathematics, an algebraic number field (or simply number field) is an extension field of the field of rational numbers such that the field extension has finite degree (and hence is an algebraic field extension). Thus is a field that contains and has finite dimension when considered as a vector space over . The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory.

Ring of integers

In mathematics, the ring of integers of an algebraic number field is the ring of all algebraic integers contained in . An algebraic integer is a root of a monic polynomial with integer coefficients: . This ring is often denoted by or . Since any integer belongs to and is an integral element of , the ring is always a subring of . The ring of integers is the simplest possible ring of integers. Namely, where is the field of rational numbers. And indeed, in algebraic number theory the elements of are often called the "rational integers" because of this.

Prime element

In mathematics, specifically in abstract algebra, a prime element of a commutative ring is an object satisfying certain properties similar to the prime numbers in the integers and to irreducible polynomials. Care should be taken to distinguish prime elements from irreducible elements, a concept which is the same in UFDs but not the same in general. An element p of a commutative ring R is said to be prime if it is not the zero element or a unit and whenever p divides ab for some a and b in R, then p divides a or p divides b.

Related lectures (220)

Galois Theory: Dedekind RingsMATH-317: Algebra V - Galois theory

Explores Galois theory with a focus on Dedekind rings and their unique factorization of fractional ideals.

Complexity & Induction: Algorithms & ProofsCS-101: Advanced information, computation, communication I

Covers worst-case complexity, algorithms, and proofs including mathematical induction and recursion.

Complexity & Induction: Algorithms & ProofsCS-101: Advanced information, computation, communication I

Explores worst-case complexity, mathematical induction, and algorithms like binary search and insertion sort.