Category of topological spacesIn mathematics, the category of topological spaces, often denoted Top, is the whose s are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again continuous, and the identity function is continuous. The study of Top and of properties of topological spaces using the techniques of is known as categorical topology. N.B. Some authors use the name Top for the categories with topological manifolds, with compactly generated spaces as objects and continuous maps as morphisms or with the .
Category (mathematics)In mathematics, a category (sometimes called an abstract category to distinguish it from a ) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the , whose objects are sets and whose arrows are functions. is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent.
Complete categoryIn mathematics, a complete category is a in which all small s exist. That is, a category C is complete if every F : J → C (where J is ) has a limit in C. , a cocomplete category is one in which all small colimits exist. A bicomplete category is a category which is both complete and cocomplete. The existence of all limits (even when J is a proper class) is too strong to be practically relevant. Any category with this property is necessarily a : for any two objects there can be at most one morphism from one object to the other.
Nerve (category theory)In , a discipline within mathematics, the nerve N(C) of a C is a simplicial set constructed from the objects and morphisms of C. The geometric realization of this simplicial set is a topological space, called the classifying space of the category C. These closely related objects can provide information about some familiar and useful categories using algebraic topology, most often homotopy theory. The nerve of a category is often used to construct topological versions of moduli spaces.
Category of small categoriesIn mathematics, specifically in , the category of small categories, denoted by Cat, is the whose objects are all and whose morphisms are functors between categories. Cat may actually be regarded as a with natural transformations serving as 2-morphisms. The initial object of Cat is the empty category 0, which is the category of no objects and no morphisms. The terminal object is the terminal category or trivial category 1 with a single object and morphism. The category Cat is itself a , and therefore not an object of itself.
Strict 2-categoryIn , a strict 2-category is a with "morphisms between morphisms", that is, where each hom-set itself carries the structure of a category. It can be formally defined as a category over Cat (the , with the structure given by ). The concept of 2-category was first introduced by Charles Ehresmann in his work on enriched categories in 1965. The more general concept of (or weak 2-category), where composition of morphisms is associative only up to a 2-isomorphism, was introduced in 1968 by Jean Bénabou.
Monoidal categoryIn mathematics, a monoidal category (or tensor category) is a equipped with a bifunctor that is associative up to a natural isomorphism, and an I that is both a left and right identity for ⊗, again up to a natural isomorphism. The associated natural isomorphisms are subject to certain coherence conditions, which ensure that all the relevant s commute. The ordinary tensor product makes vector spaces, abelian groups, R-modules, or R-algebras into monoidal categories. Monoidal categories can be seen as a generalization of these and other examples.
Quillen adjunctionIn homotopy theory, a branch of mathematics, a Quillen adjunction between two C and D is a special kind of adjunction between that induces an adjunction between the Ho(C) and Ho(D) via the total derived functor construction. Quillen adjunctions are named in honor of the mathematician Daniel Quillen. Given two closed model categories C and D, a Quillen adjunction is a pair (F, G): C D of adjoint functors with F left adjoint to G such that F preserves cofibrations and trivial cofibrations or, equivalently by the closed model axioms, such that G preserves fibrations and trivial fibrations.
Topological spaceIn mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness.
Timeline of category theory and related mathematicsThis is a timeline of category theory and related mathematics. Its scope ("related mathematics") is taken as: of abstract algebraic structures including representation theory and universal algebra; Homological algebra; Homotopical algebra; Topology using categories, including algebraic topology, categorical topology, quantum topology, low-dimensional topology; Categorical logic and set theory in the categorical context such as algebraic set theory; Foundations of mathematics building on categories, for instance topos theory; Abstract geometry, including algebraic geometry, categorical noncommutative geometry, etc.