In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate.
A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. Common types of topological spaces include Euclidean spaces, metric spaces and manifolds.
Although very general, the concept of topological spaces is fundamental, and used in virtually every branch of modern mathematics. The study of topological spaces in their own right is called point-set topology or general topology.
Around 1735, Leonhard Euler discovered the formula relating the number of vertices, edges and faces of a convex polyhedron, and hence of a planar graph. The study and generalization of this formula, specifically by Cauchy (1789-1857) and L'Huilier (1750-1840), boosted the study of topology. In 1827, Carl Friedrich Gauss published General investigations of curved surfaces, which in section 3 defines the curved surface in a similar manner to the modern topological understanding: "A curved surface is said to possess continuous curvature at one of its points A, if the direction of all the straight lines drawn from A to points of the surface at an infinitesimal distance from A are deflected infinitesimally from one and the same plane passing through A."
Yet, "until Riemann's work in the early 1850s, surfaces were always dealt with from a local point of view (as parametric surfaces) and topological issues were never considered".