**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Topological space

Summary

In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate.
A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. Common types of topological spaces include Euclidean spaces, metric spaces and manifolds.
Although very general, the concept of topological spaces is fundamental, and used in virtually every branch of modern mathematics. The study of topological spaces in their own right is called point-set topology or general topology.
Around 1735, Leonhard Euler discovered the formula relating the number of vertices, edges and faces of a convex polyhedron, and hence of a planar graph. The study and generalization of this formula, specifically by Cauchy (1789-1857) and L'Huilier (1750-1840), boosted the study of topology. In 1827, Carl Friedrich Gauss published General investigations of curved surfaces, which in section 3 defines the curved surface in a similar manner to the modern topological understanding: "A curved surface is said to possess continuous curvature at one of its points A, if the direction of all the straight lines drawn from A to points of the surface at an infinitesimal distance from A are deflected infinitesimally from one and the same plane passing through A."
Yet, "until Riemann's work in the early 1850s, surfaces were always dealt with from a local point of view (as parametric surfaces) and topological issues were never considered".

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (13)

Related courses (56)

MATH-506: Topology IV.b - cohomology rings

Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a

ENV-342: Geographic information system (GIS)

Acquisition de concepts et compétences de base liées à la représentation numérique des données géographiques et à leur insertion dans des SIG. Apprentissage de processus d'analyse spatiale pour les in

MATH-323: Algebraic topology

Homology is one of the most important tools to study topological spaces and it plays an important role in many fields of mathematics. The aim of this course is to introduce this notion, understand it

Related lectures (254)

Related concepts (356)

Open Mapping Theorem

Explains the Open Mapping Theorem for holomorphic maps between Riemann surfaces.

The Duplication of the Cube

Explores the historical significance of the duplication of the cube problem and the attribution of mathematical instruments.

The Topological Künneth Theorem

Explores the topological Künneth Theorem, emphasizing commutativity and homotopy equivalence in chain complexes.

In topology and related branches of mathematics, a Hausdorff space (ˈhaʊsdɔːrf , ˈhaʊzdɔːrf ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters. Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology.

In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more natural-seeming, topology called the box topology, which can also be given to a product space and which agrees with the product topology when the product is over only finitely many spaces.

In the mathematical field of topology, a homeomorphism (, named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the —that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same.

Conjugation spaces are topological spaces equipped with an involution such that their fixed points have the same mod 2 cohomology (as a graded vector space, a ring and even an unstable algebra) but wi

In this thesis, we investigate the inverse problem of trees and barcodes from a combinatorial, geometric, probabilistic and statistical point of view.Computing the persistent homology of a merge tree

Collapsing cell complexes was first introduced in the 1930's as a way to deform a space into a topological-equivalent subspace with a sequence of elementary moves. Recently, discrete Morse theory tech