We explore a few algebraic and geometric structures, through certain questions posed by modern cryptography. We focus on the cases of discrete logarithms in finite fields of small characteristic, the structure of isogeny graphs of ordinary abelian varietie ...
Hurwitz spaces parameterizing covers of the Riemann sphere can be equipped with a Frobenius structure. In this review, we recall the construction of such Hurwitz Frobenius manifolds as well as the correspondence between semisimple Frobenius manifolds and t ...
Modifying the moduli of supporting convexity and supporting smoothness, we introduce new moduli for Banach spaces which occur, for example, as lengths of catheti of right-angled triangles (defined via so-called quasiorthogonality). These triangles have two ...
We analyze the dynamic behavior of Newtonian fluids in elastic tubes subject to pulsatile pressure gradients and show that the interplay between the viscosity of the fluid, the elasticity of the wall, and the characteristic size of the confining media give ...
Objective: To perform a mechanical characterization of a self-setting calcium phosphate cement in function of the immersion time in Ringer solution. Materials and methods: Specimens of self-setting calcium phosphate cement were prepared from pure alpha-TCP ...
In the present thesis we study the geometry of the moduli spaces of Bradlow-Higgs triples on a smooth projective curve C. There is a family of stability conditions for triples that depends on a positive real parameter Ï . The moduli spaces of Ï -semistable ...
Nowadays, one area of research in cryptanalysis is solving the Discrete Logarithm Problem (DLP) in finite groups whose group representation is not yet exploited. For such groups, the best one can do is using a generic method to attack the DLP, the fastest ...
We introduce a notion of xi-stability on the affine grassmannian (SIC) for the classical groups, this is the local version of the xi-stability on the moduli space of Higgs bundles on a curve introduced by Chaudouard and Laumon. We prove that the quotient ( ...
Representations of solutions of equations describing the diffusion and quantum dynamics of particles in a Riemannian manifold are discussed under the assumption that the mass of particles is anisotropic and depends on both time and position. These equation ...
We construct five families of 2D moduli spaces of parabolic Higgs bundles (respectively, local systems) by taking the equivariant Hilbert scheme of a certain finite group acting on the cotangent bundle of an elliptic curve (respectively, twisted cotangent ...