Photonic integrated circuits are paving the way for novel on-chip functionalities with diverse applications in communication, computing, and beyond. The integration of on-chip light sources, especially single-mode lasers, is crucial for advancing those pho ...
Quantum optics studies how photons interact with other forms of matter, the understanding of which was crucial for the development of quantum mechanics as a whole. Starting from the photoelectric effect, the quantum property of light has led to the develop ...
Phase transitions in non-Hermitian systems are at the focus of cutting edge theoretical and experimental research. On the one hand, parity-time- (PT-) and anti-PT-symmetric physics have gained ever-growing interest, due to the existence of non-Hermitian sp ...
Full wavefront control by photonic components requires that the spatial phase modulation on an incoming optical beam ranges from 0 to 2 pi. Because of their radiative coupling to the environment, all optical components are intrinsically non-Hermitian syste ...
This thesis explores the application of recent advances in integrated photonics to the field of light detection and ranging (LiDAR).
The progress in photonic integration allows for unprecedented levels of light manipulation on micrometer scales through the ...
We propose the realization of exceptional points (EP) at bound states in the continuum (BIC), with two coupled strips, made of an electron-beam resist and patterned on the thin film photonic integrated platform, which makes possible etchless photonics inte ...
The formalism for non-Hermitian quantum systems sometimes blurs the underlying physics. We present a systematic study of the vielbeinlike formalism which transforms the Hilbert space bundles of non-Hermitian systems into the conventional ones, rendering th ...
The exploration of open quantum many-body systems -systems of microscopic size exhibiting quantum coherence and interacting with their surrounding- has emerged as a key research area over the last years. The recent advances in controlling and preserving qu ...
Devices based on two-dimensional (2D) semiconductors hold promise for the realization of compact and versatile on-chip interconnects between electrical and optical signals. Although light emitting diodes (LEDs) are fundamental building blocks for integrate ...
Quasi-phase-matching has long been a widely used approach in nonlinear photonics, enabling efficient parametric frequency conversions such as second-harmonic generation. However, in silicon photonics the task remains challenging, as materials best suited f ...