Solid Oxide Fuel Cells (SOFCs) are electrochemical devices that convert chemical energy from fuel directly into electrical and thermal energy. They present high electrical efficiency and because of this feature they are considered to be an important power source alternative. However, due to their high temperature of operation, SOFCs are subject to degradation, that is, their ability to produce electricity deteriorates in time. The reasons and the conditions that contribute to degradation are multiple. Among the studied factors, operating temperature is an important one. It has been found that a stable and controllable thermal environment can mitigate this undesirable phenomenon. Therefore, the pursuit of appropriate thermal conditions during their operation is of paramount importance for their lifetime and consequently for their commercialisation. Studying and obtaining such conditions is also known as thermal management. Another important point regarding the study of SOFCs is the development and use of adequate mathematical models that the engineer and generally the researcher will use as tools to analyse their behaviour and will determine conditions for safe and efficient operation. For practical applications, these models must be validated against experimental data. The result of such validation is the determination, or calibration, of the model parameters so that the output of the model fits measurements taken in the laboratory to the best possible extent. This process is called parameter estimation or system identification. This thesis tackles both aspects. In its first part it works on the thermal management of a specific product, an SOFC autonomous unit fed with methane, producing electrical power and liberating hot off-gases that can be used as a source of thermal power. A dynamic model of the physical system is developed and validated against experimental data. During this process, it was found that measurement of gas temperatures using thermocouples may be severely biased due to radiation effects of surrounding solids to the thermocouples. In order to overcome this hurdle, the phenomena that take place around the thermocouple were incorporated into the system's mathematical model. Such a systematic error may have important consequences on the thermal management and generally on the control of the SOFC system. Indeed, an investigation effectuated in this thesis revealed how incorrect gas temperature measurements affect the system's control to such an extent that, depending on the conditions, may lead to system failure. The validation of the system model proved to be particularly challenging. This fact incited the author to investigate the factors that contribute to reliable parameter estimations. This is the subject of the second part of this thesis. A first study was performed on model-based Design of Experiments (DoE) for SOFC button cells, i.e. on how measurements on small cells may be optimised. To our knowledge the study treats for
Sophia Haussener, Saurabh Yuvraj Tembhurne, Alexandre Dominique M. Cattry, Matthieu Jonin, Mahendra Patel
Mario Paolone, Vladimir Sovljanski