Current fuel management strategies for light water reactors (LWRs), in countries with high back-end costs, progressively extend the discharge burnup at the expense of increasing the 235U enrichment of the fresh UO2 fuel loaded. In this perspective, standard non-destructive assay (NDA) techniques, which are very attractive because they are fast, cheap, and preserve the fuel integrity, in contrast to destructive approaches, require further validation when burnup values become higher than 50 GWd/t. This doctoral work has been devoted to the development and optimisation of non-destructive assay (NDA) techniques based on gamma-ray emissions from irradiated fuel. It represents an important extension of the unique, high-burnup related database, generated in the framework of the LWR-PROTEUS Phase II experiments. A novel tomographic measurement station has been designed and developed for the investigation of irradiated fuel rod segments. A unique feature of the station is that it allows both gamma-ray transmission and emission computerised tomography to be performed on single fuel rods. Four burnt UO2 fuel rod segments of 400 mm length have been investigated, two with very high (52 GWd/t and 71 GWd/t) and two with ultra-high (91 GWd/t and 126 GWd/t) burnup. Several research areas have been addressed, as described below. The application of transmission tomography to spent fuel rods has been a major task, because of difficulties of implementation and the uniqueness of the experiments. The main achievements, in this context, have been the determination of fuel rod average material density (a linear relationship between density and burnup was established), fuel rod linear attenuation coefficient distribution (for use in emission tomography), and fuel rod material density distribution. The non-destructive technique of emission computerised tomography (CT) has been applied to the very high and ultra-high burnup fuel rod samples for determining their within-rod distributions of caesium and europium fission-product radionuclides. As indicated above, results provided by the transmission tomography measurements were employed in the emission tomography reconstruction phase, together with a calculated global efficiency matrix and input sinograms derived from the processing of measured projections. Different tomographic algorithms were tested and "tuned", on the basis of known test distributions, before being applied to the actual fuel rod measurements. Amongst the various possibilities, the Paraboloidal Surrogates Coordinate Ascent (PSCA) penalised likelihood method has been chosen for presentation of the final results, because it ensures high precision, especially in resolving the most difficult peripheral regions of the rods. The results of the emission tomography have indicated large central depressions in the caesium distributions, but of varying extent from sample to sample. Particularly interesting is the case of the 126 GWd/t sample, showing a very deep centra
Andreas Pautz, Vincent Pierre Lamirand, Oskari Ville Pakari
Andreas Pautz, Vincent Pierre Lamirand, Mathieu Hursin, Oskari Ville Pakari, Thomas Jean-François Ligonnet, Tom Mager