Summary
The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the front end, which are the preparation of the fuel, steps in the service period in which the fuel is used during reactor operation, and steps in the back end, which are necessary to safely manage, contain, and either reprocess or dispose of spent nuclear fuel. If spent fuel is not reprocessed, the fuel cycle is referred to as an open fuel cycle (or a once-through fuel cycle); if the spent fuel is reprocessed, it is referred to as a closed fuel cycle. Nuclear power relies on fissionable material that can sustain a chain reaction with neutrons. Examples of such materials include uranium and plutonium. Most nuclear reactors use a moderator to lower the kinetic energy of the neutrons and increase the probability that fission will occur. This allows reactors to use material with far lower concentration of fissile isotopes than are needed for nuclear weapons. Graphite and heavy water are the most effective moderators, because they slow the neutrons through collisions without absorbing them. Reactors using heavy water or graphite as the moderator can operate using natural uranium. A light water reactor (LWR) uses water in the form that occurs in nature, and requires fuel enriched to higher concentrations of fissile isotopes. Typically, LWRs use uranium enriched to 3–5% U-235, the only fissile isotope that is found in significant quantity in nature. One alternative to this low-enriched uranium (LEU) fuel is mixed oxide (MOX) fuel produced by blending plutonium with natural or depleted uranium, and these fuels provide an avenue to utilize surplus weapons-grade plutonium. Another type of MOX fuel involves mixing LEU with thorium, which generates the fissile isotope U-233. Both plutonium and U-233 are produced from the absorption of neutrons by irradiating fertile materials in a reactor, in particular the common uranium isotope U-238 and thorium, respectively, and can be separated from spent uranium and thorium fuels in reprocessing plants.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (11)
PHYS-600: Frederic Joliot/Otto Hahn Summer School on nuclear reactors Physics, fuels and systems
The School's aim is to address the challenges of reactor design and optimal fuel cycles, and to broaden the understanding of theory and experiments. The programme of each School session is defined by
ME-464: Introduction to nuclear engineering
This course is intended to understand the engineering design of nuclear power plants using the basic principles of reactor physics, fluid flow and heat transfer. This course includes the following: Re
PHYS-443: Physics of nuclear reactors
In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
Show more