Excitons play an essential role in the optical response of two-dimensional materials. These are bound states showing up in the band gaps of many-body systems and are conceived as quasiparticles formed by an electron and a hole. By performing real-time simu ...
Advancing quantum technologies depends on the precise control of individual quantum systems, the so-called qubits, and the exploitation of their quantum properties. Nowadays, expanding the number of qubits to be entangled is at the core of the developments ...
Tip-enhanced Raman spectroscopy (TERS) under ultrahigh vacuum and cryogenic conditions enables exploration of the relations between the adsorption geometry, electronic state, and vibrational fingerprints of individual molecules. TERS capability of reflecti ...
The invention of 3D atomic force microscopy (3D-AFM) has enabled visualizing subnanoscale 3D hydration structures. Meanwhile, its applications to imaging flexible molecular chains have started to be experimentally explored. However, the validity and princi ...
Controlled atomic patterning is an attractive tool to fine tune properties of graphitic lattice. Several O-functionalized derivatives of graphitic lattice have been widely studied, e.g., graphene oxide, reduced graphene oxide, and functionalized carbon nan ...
Molecular junctions represent a fascinating frontier in the realm of nanotechnology and are one of the
smallest optoelectronic devices possible, consisting of individual molecules or a group of molecules
that serve as the active element sandwiched between ...
Recently, single-particle cryo-electron microscopy emerged as a technique capable of determining protein structures at near-atomic resolution and resolving protein dynamics with a temporal resolution ranging from second to milliseconds. This thesis describ ...
Using scanning tunneling microscopy (STM), we experimentally and theoretically investigate isolated platinum phthalocyanine (PtPc) molecules adsorbed on an atomically thin NaCl(100) film vapor deposited on Au(111). We obtain good agreement between theory a ...
Real-world samples of graphene often exhibit various types of out-of-plane disorder-ripples, wrinkles and folds-introduced at the stage of growth and transfer processes. These complex out-of-plane defects resulting from the interplay between self-adhesion ...
Our understanding of quantum materials is commonly based on precise determinations of their electronic spectrum by spectroscopic means, most notably angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy. Both require atomicall ...