Application of a single metal or alloy is often restricted by its properties from optimal combination of performance and cost. Therefore, there is a vast need of joining dissimilar metals for various applications in biomedical, aerospace, automobile and ma ...
Metal plasticity is an inherently multiscale phenomenon due to the complex long-range field of atomistic dislocations that are the primary mechanism for plastic deformation in metals. Atomistic/Continuum (A/C) coupling methods are computationally efficient ...
Laser powder bed fusion (LPBF) is a powder-based additive manufacturing (AM) technique, which shows great potential in the production of complex-shaped parts with unprecedented design freedom. In addition, it allows for an active manipulation of the micros ...
Wire-arc directed energy deposition (wire-arc DED), recognized for its ability to produce large-scale parts, has gained considerable attention. However, a critical issue with this method is the high prevalence of internal porosity defects found in the manu ...
Body-centered-cubic (BCC) high entropy alloys (HEAs) can show exceptionally high strength up to high temperatures. Mechanistic theories are needed to guide alloy discovery within the immense multicomponent HEA compositional space. Here, two new theories fo ...
A microcasting process is used to produce high aspect ratio ( > 30) monocrystalline pure aluminium wires with a diameter between 14 and 115 mu m. The role of thermal activation in the plastic deformation of these microwires is measured by means of (single) ...
The project aims to validate some recent theoretical developments on the deformation twinning nucleation mechanism in HCP metals through small-scale mechanic experiments. To this end, a systematic investigation of the mechanical response of pure magnesium ...
Tuning the mechanical properties of metals, including strength, through adjusting the type and/or concentration of added solute elements, has been recognized as an effective way to design and produce materials with desired or optimized mechanical propertie ...
Many metal alloys are strengthened by controlling precipitation to achieve an optimal peak-aged condi-tion where the strength-limiting processes of precipitate shearing and Orowan looping are thought to be comparable. Qualitative models have long captured ...
The need for efficient and selective catalysts, capable of driving important conversions to build a more sustainable society, encourages the development of synthetic approaches towards new nanomaterials. Cu-based bimetallic nanoparticles (NPs) promise to f ...