In mathematics, a partial differential equation (PDE) is an equation which computes a function between various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similar to how x is thought of as an unknown number to be solved for in an algebraic equation like x2 − 3x + 2 = 0. However, it is usually impossible to write down explicit formulas for solutions of partial differential equations.
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology.
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as or where is the Laplace operator, is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and is a twice-differentiable real-valued function. The Laplace operator therefore maps a scalar function to another scalar function.
Baron Siméon Denis Poisson FRS FRSE (si.me.ɔ̃ də.ni pwa.sɔ̃; 21 June 1781 – 25 April 1840) was a French mathematician and physicist who worked on statistics, complex analysis, partial differential equations, the calculus of variations, analytical mechanics, electricity and magnetism, thermodynamics, elasticity, and fluid mechanics. Moreover, he predicted the Poisson spot in his attempt to disprove the wave theory of Augustin-Jean Fresnel, which was later confirmed.
In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. The set X is called the domain of the function and the set Y is called the codomain of the function. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a function of time. Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable (that is, they had a high degree of regularity).
In mathematics, a hyperbolic partial differential equation of order is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first derivatives. More precisely, the Cauchy problem can be locally solved for arbitrary initial data along any non-characteristic hypersurface. Many of the equations of mechanics are hyperbolic, and so the study of hyperbolic equations is of substantial contemporary interest. The model hyperbolic equation is the wave equation.
Ce cours est une première introduction à la mécanique des fluides. On aborde tout d'abord les propriétés physiques des fluides et quelques principes fondamentaux de la physique, dont ceux de conservat
Le cours étudie les concepts fondamentaux de l'analyse vectorielle et l'analyse de Fourier en vue de leur utilisation pour résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.
The course studies the fundamental concepts of complex analysis with a view to their use in solving multidisciplinary problems of scientific engineering.
An introduction to methods of harmonic analysis.
Covers convergence of Fourier series, Hilbert transform, Calderon-Zygmund theory, Fourier restriction, and applications to PDE.
Of italian nationality, Alfio Quarteroni was born on May 30th 1952. He pursued his studies in mathematics at University of Pavia and at University of Paris VI. In 1986 he was nominated full professor at Catholic University of Brescia, later professor in ma ...
Prof. Hesthaven received an M.Sc. in computational physics from the Technical University of Denmark (DTU) in August 1991. During the studies, the last 6 months of 1989 was spend at JET, the european fusion laboratory in Culham, UK. Following graduation, he ...
Olivier J.F. Martin received the M.Sc. and Ph.D. degrees in physics in 1989 and 1994, respectively, from the Swiss Federal Institute of Technology, Lausanne (EPFL), Switzerland. In 1989, he joined IBM Zurich Research Laboratory, where he investigated therm ...
We establish shape holomorphy results for general weakly- and hyper-singular boundary integral operators arising from second-order partial differential equations in unbounded two-dimensional domains with multiple finite-length open arcs. After recasting th ...
We propose a local, non -intrusive model order reduction technique to accurately approximate the solution of coupled multi -component parametrized systems governed by partial differential equations. Our approach is based on the approximation of the boundar ...