**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Startup# CFS Engineering

Description

CFS Engineering, founded in 1999 and located in the EPFL Innovation Park, specializes in offering services in the Numerical Simulation of Fluid Mechanics and Structural Mechanics Engineering Problems. The company collaborates with clients to enhance product design and performance by utilizing numerical simulation, which is faster and more cost-effective than traditional testing methods. CFS Engineering provides services such as grid generation, computational fluid dynamics simulations, structural mechanics simulations, and wind tunnel testing. The company tailors its simulation codes to meet specific client needs and has access to two Linux clusters with a total of 120 cores. Collaborations with leading organizations like RUAG, SMR Engineering, and Airinnova demonstrate CFS Engineering's expertise in the aerospace industry.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (30)

Related courses (82)

Related people (45)

Related startups (4)

Related publications (3)

Related MOOCs (28)

Related units (30)

Related lectures (573)

Computer simulation

Computer simulation is the process of mathematical modelling, performed on a computer, which is designed to predict the behaviour of, or the outcome of, a real-world or physical system. The reliability of some mathematical models can be determined by comparing their results to the real-world outcomes they aim to predict. Computer simulations have become a useful tool for the mathematical modeling of many natural systems in physics (computational physics), astrophysics, climatology, chemistry, biology and manufacturing, as well as human systems in economics, psychology, social science, health care and engineering.

Structural analysis

Structural analysis is a branch of solid mechanics which uses simplified models for solids like bars, beams and shells for engineering decision making. Its main objective is to determine the effect of loads on the physical structures and their components. In contrast to theory of elasticity, the models used in structure analysis are often differential equations in one spatial variable. Structures subject to this type of analysis include all that must withstand loads, such as buildings, bridges, aircraft and ships.

Applied mechanics

Applied mechanics is the branch of science concerned with the motion of any substance that can be experienced or perceived by humans without the help of instruments. In short, when mechanics concepts surpass being theoretical and are applied and executed, general mechanics becomes applied mechanics. It is this stark difference that makes applied mechanics an essential understanding for practical everyday life.

Simulation

A simulation is the imitation of the operation of a real-world process or system over time. Simulations require the use of models; the model represents the key characteristics or behaviors of the selected system or process, whereas the simulation represents the evolution of the model over time. Often, computers are used to execute the simulation. Simulation is used in many contexts, such as simulation of technology for performance tuning or optimizing, safety engineering, testing, training, education, and video games.

Web-based simulation

Web-based simulation (WBS) is the invocation of computer simulation services over the World Wide Web, specifically through a web browser. Increasingly, the web is being looked upon as an environment for providing modeling and simulation applications, and as such, is an emerging area of investigation within the simulation community. Web-based simulation is used in several contexts: In e-learning, various principles can quickly be illustrated to students by means of interactive computer animations, for example during lecture demonstrations and computer exercises.

The student will acquire the basis for the analysis of static structures and deformation of simple structural elements. The focus is given to problem-solving skills in the context of engineering desig

This course provides practical experience in the numerical simulation of fluid flows. Numerical methods are presented in the framework of the finite volume method. A simple solver is developed with Ma

This class adresses scaling laws in MEMS/NEMS. The dominant physical effects and scaling effects when downsizing sensors and actuators in microsystems are discussed, across a broad range of actuation

Zace

Active in geotechnics, geomechanics and software. Zace Services SA develops ZSoil(r).PC software for geotechnics and geomechanics, offering a unified approach to soil, rock, and structural mechanics in 3 dimensions.

AEDS

Active in engineering, consulting and numerical simulations. AEDS is a consulting firm specializing in scientific engineering services related to numerical simulations, with a focus on fluid dynamics, acoustics, and heat transfer.

Aurora's Grid

Active in energy management, battery optimization and renewable energy. Aurora's Grid specializes in energy management software for Li-ion batteries, optimizing renewable energy consumption, reducing battery ageing, and cutting CO2 emissions.

SES Swiss-Energyscope

La transition énergique suisse / Energiewende in der Schweiz

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Structural Mechanics: Basics and ApplicationsME-104: Introduction to structural mechanics

Covers the basics of structural mechanics, materials, and design principles, including the iconic Eiffel Tower.

Introduction to Structural Mechanics

Introduces resultants in 3D, equilibrium in 2D, and free-body diagrams for structural analysis.

Structural Mechanics Part 2: FEM & Scaling LawsMICRO-470: Scaling laws in micro & nanosystems

Explores Finite Element Modeling in Structural Mechanics, covering convergence, nonlinear displacement, and scaling laws in micro and nanosystems.

Introduction to Structural Mechanics

Introduces the basics of structural mechanics, covering plane trusses, internal forces, and equilibrium analysis.

Structural Mechanics: Beam Bending and Boundary Conditions

Explores the moment-curvature relation for beams, emphasizing stress distribution and typical boundary conditions.

, , , , , , , , ,

In nuclear safety, most severe accident scenarios lead to the presence of fission products in aerosol form in the closed containment atmosphere. It is important to understand the particle depletion process to estimate the risk of a release of radioactivity to the environment should a containment break occur. As a model for the containment, we use the three-dimensional differentially heated cavity (DHC) problem. DHC is a cubical box with a hot wall and a cold wall on vertical opposite sides. On the other walls of the cube we have adiabatic boundary conditions. For the velocity field the no-slip boundary condition is valid. The flow of the air in the cavity is described by the Boussinesq equations. Complex flow patterns develop and the flow characteristics depend on the non-dimensional Rayleigh and Prandtl numbers. The predominant flow type in the DHC is a turbulent natural convection flow. This work aims at reaching Rayleigh numbers and turbulent levels as high as possible given the available computational resources. The method used to simulate the turbulent flow is the large eddy simulation (LES) where the dynamics of the large eddies is resolved by the computational grid and the small eddies are modelled by the introduction of subgrid scale quantities using a filter function. Numerically, the LES equations are discretized by the spectral element method. Particle trajectories are computed using the Lagrangian particle tracking method, including the relevant forces (drag, gravity, thermophoresis). Four different particle sets with each set containing one million particles and diameters of 10 μm, 15 μm, 25 μm and 35 μm are simulated. The complexity and the size of the large three-dimensional problem requires the use of massively parallel supercomputers. Spectral element methods are naturally suitable for parallelisation by distributing the elements among the processors. For the Lagrangian particle tracking we use a method where equal numbers of particles are assigned to every processor. The flow field is broadcast and every particle processor tracks the assigned particles, a procedure which leads to a perfect load balancing. Simulation results for the flow field and particle sizes from 15 μm to 35 μm at a Rayleigh number of 109 are compared to previous results from a direct numerical simulation. First order statistics of the LES flow fields are in very good agreement with the direct numerical simulation while the agreement of second order moments is fair. Also the turbulent structures associated to the maximum of turbulent kinetic energy production are correctly reproduced. Particle statistics in the LES and the direct numerical simulation were similar and the settling rates practically identical. Contrary to previous particle simulations in LES, it was found that no model was necessary for the influence of the unresolved flow scales on the particle motions. This can be explained, because the important settling mechanism is through gravity and particle deposition at the walls by turbophoresis is negligible.

In the last years, the correlation between air pollution and health issues related to respiratory, cardiovascular and digestive systems has become evident. Today, urban aerosols raise the interest of both scientific community and public opinion. METAS, the Swiss Federal Institute of Metrology, takes part in AeroTox, a European Union’s research project involving the development of a reference aerosol calibration infrastructure - a so-called mixing chamber. In this chamber, pure air and particles are injected on top and the resulting aerosol is sampled at the bottom. The quality of this aerosol is assessed according to its concentration homogeneity: the purpose of this master’s project is to improve it. In addition, two research questions were addressed. How much can the mixing chamber dimensions be reduced without affecting the concentration homogeneity? Dimensions are crucial because the mixing chamber must be transportable. Also, how much can the flow rates be reduced without affecting the concentration homogeneity? Computational Fluid Dynamics (CFD) simulations and experiments were employed. Numerical simulations were performed in COMSOL Multiphysics, implementing a particle tracing and a diluted species model. This allowed to investigate the structure of the flow and the involved mixing mechanisms: diffusion, convection and turbulent dispersion. However, only the diluted species model was successful. The simulated concentration at the outlet is perfectly homogeneous. Experiments were carried out using two particle size distributions: NaCl (size peak at 80 nm) and Polystyrene Latex (PSL, size peak at 900 nm). Empirical data validate simulations and show a concentration homogeneity within 5%. Furthermore, uncertainty on the measurements is of 4.24%: the simulated concentration homogeneity thus lies within the uncertainty of the experimental findings. Moreover, experiments show that salt particles reach a higher concentration homogeneity than PSL particles. Finally, in case of salt particles, experiments prove that the flow rates can be halved and even equalized and the length of the mixing chamber can be reduced to 50% without drastically affecting the concentration homogeneity.

2020Jean-Marie Drezet, Andreas Ludwig

In the field of modern steelmaking, continuous casting has become the major manufacturing process to handle a wide range of steel grades. An important criterion characterizing the quality of semi-finished cast products is the macrosegregation forming at the centre of these products during solidification. The deformation induced interdendritic melt flow has been identified as the key mechanism for the formation of centreline segregation. Bulging of the solidified strand shell causes deformation of the solidifying dendrites at the casting’s centre. Hence, a fundamental knowledge about the solid phase motion during casting processes is crucial to examine segregation phenomena in detail. To investigate dendritic deformation particularly at the strand centre, a thermo-mechanical Finite Element (FE) simulation model is built in the commercial software package ABAQUS. The complex dendritic shape is approximated with a conical model geometry. Varying this geometry allows considering the influence of different centreline solid fractions on the dendrite deformation. A sinusoidal load profile is used to describe bulging of the solid which deforms the dendrites. Based on the strain rates obtained in the FE simulations the dendrite deformation velocity perpendicular to the casting direction is calculated. The velocity presented for different conditions is used as input parameter for computational fluid dynamics (CFD) simulations to investigate macrosegregation formation inside of a continuous casting strand using the commercial software package FLUENT.

2012