Lijing XinLijing Xin is a research staff scientist and 7T MR Operational Manager at the Center for Biomedical Imaging (CIBM), Ecole polytechnique fédérale de Lausanne (EPFL), Switzerland. Her research interests focus on developing cutting-edge magnetic resonance spectroscopy and imaging methods for better understanding the brain function and the pathophysiology of neurological diseases. Her journey on magnetic resonance imaging (MRI) started from her master project during 2002-2005, where she developed a gradient unit with eddy current compensation and a pulse sequence generator for MRI spectrometer, which enhanced her knowledge in MR instrumentation. Later, she obtained her PhD in physics from Ecole polytechnique fédérale de Lausanne (EPFL) in 2010, where she focused on developing various novel 1H and 13C magnetic resonance spectroscopy (MRS) acquisition and quantification methods as well as RF coils on high field preclinical MR scanners. Afterwards, she started working on the clinical MR platforms including both 3 and 7T and continued to improve and develop novel acquisition and quantification methods for 1H, 13C and 31P nuclei. She carries on interdisciplinary collaborations with different partners, particularly with clinical partners where translational strategies are performed to explore the pathophysiology of psychiatric disorders and disease biomarkers for early diagnose and intervention.
Maria Giulia PretiMaria Giulia Preti received her Ph.D. in Bioengineering at Politecnico di Milano (Milan, Italy) in 2013, after her M. Sc. (2009) and B. Sc. (2007) in Biomedical Engineering, as well at Politecnico di Milano. During her Ph.D., mentored by Prof. Giuseppe Baselli, she focused on advanced techniques of brain magnetic resonance imaging, in particular she developed a method of groupwise fMRI-guided tractography, that revealed to be useful in the in-vivo investigation of the pathophysiological changes across the evolution of Alzheimers disease. For this project, she had been collaborating full-time with the hospital Fondazione Don Gnocchi in Milan (Magnetic Resonance Laboratory). In 2011, she was awarded a Progetto Rocca fellowship from MIT-Italy and spent a visiting research period at the MIT and Harvard Medical School (Boston, USA), under the supervision of Prof. Nikos Makris, where she could focus on the anatomical study of specific neruonal bundles.
She has joined Prof. Van De Ville group at EPFL as a post-doc in 2013. Her current research aims at understanding the connections between brain functionality and brain microscopic anatomy by using advanced techniques of Magnetic Resonance Imaging. In particular, she is working on functional MRI, functional connectivity, diffusion tensor imaging and tractography, integration of MRI with other techniques (e.g. EEG), and the application of these methods to several clinical contexts, e.g., epilepsy, Alzheimer's disease and mild cognitive impairment, multiple sclerosis, attention deficit hyperactivity disorder.
Stéphanie LacourStéphanie P. Lacour holds the Bertarelli Foundation Chair in Neuroprosthetic Technology in the School of Engineering at EPFL and leads the Laboratory for Soft Bioelectronic Interfaces. She received her PhD in Electrical Engineering from INSA de Lyon, France, and completed postdoctoral research at Princeton University and the University of Cambridge. She is the recipient of the 2006 MIT TR35, a University Research Fellowship of the Royal Society, European Research Council ERC Starting and POC Grants, and a SNSF-ERC Consolidator Grant. She was elected a 2015 Young Global Leader by the World Economic Forum.
Didier TronoAfter obtaining an M.D. from the University of Geneva and completing a clinical training in pathology, internal medicine and infectious diseases in Geneva and at Massachusetts General Hospital in Boston, Didier Trono embarked in a scientific career at the Whitehead Institute for Biomedical Research of MIT. In 1990, he joined the faculty of the Salk Institute for Biological Studies to launch a center for AIDS research. He moved back to Europe seven years later, before taking the reins of the newly created EPFL School of Life Sciences, which he directed from 2004 to 2012. He is now actively engaged in the efforts of Switzerland to integrate new technologies in the fields of precision medicine and personalized health.
Hannes BleulerSwiss, Born 19.2.1954
1973-78 ETH Zurich, M.S. in Electrical Engineering
1979-84 Teaching Assistant, Doctorate Student at ETH (Inst. of Mechanics)
1984 Ph.D. thesis in Mechatronics (magnetic bearings, Prof. G. Schweitzer)
1985-87 Research Engineer at Hitachi Ltd, Japan, Mechanical Engineering Research Laboratory;
1987 Invited researcher at the Tokyo Institute of Technology (Precision Mechatronics, Prof. K. Ono)
1988-91 Lecturer and Senior Assistant at ETH ; co-foundation of MECOS-Traxler AG
1991-95 Toshiba Chair of "Intelligent Mechatronics" and then regular Associate Professor at The University of Tokyo (Institute of Industrial Science)
1995-present Full Professor at EPFL Lausanne on microrobotics, biomedical robotics;
2000 Co-founder of xitact SA, Morges (robotic surgery instrumentation & simulators)
2002-2006 President Conference of Professors and Lecturers of EPFL, member of Assemblée de l'Ecole
2006 Chairman of ISMB10 (10th International Symposium on Magnetic Bearings, Martigny, Switzerland)
2006 Nomination as member of the Swiss Academy of Technical Sciences (SATW)
Daniel ConstamDaniel Constam received his doctoral degree in Natural Sciences from ETH Zürich in the neuroimmunology group of Adriano Fontana (1993). For postdoctoral studies, he joined the laboratory of Elizabeth Robertson as an EMBO fellow at Harvard University to characterize proprotein convertase (PC) functions in mouse models of early embryogenesis (1994-1999). As an ISREC group leader (>2000) and Associate Professor at EPFL (>2007), he initially continued to study pluripotency and lineage differentiation during development and found that several secreted PCs jointly regulate cell-cell adhesion and TGFβ signaling pathways at the cross-roads of stem cell and cancer biology. To map the proteolytic activity of PCs and their relative distribution in exocytic or endocytic vesicles, his lab developed PC-specific FRET sensors for high resolution live imaging in normal cells and in tumour-host interactions. His studies on TGFβ signaling also identified the RNA-binding protein Bicc1 and its self-polymerization in membrane-less organelles as regulators of mRNA translation and cell metabolism that cooperate with primary cilia to prevent cystic growth in renal tubules and in pancreatic and bile ducts.