Alfred RuferOriginaire de Diessbach (BE), Alfred Rufer est né en 1951. Il obtient en 1976 le diplôme d'ingénieur électricien de l'EPFL et poursuit son activité dans le même établissement en tant qu'assistant à la chaire d'électronique industrielle. En 1993, il est nommé professeur-assistant au Laboratoire d'électronique industrielle. Au début 1996, il est nommé professeur extraordinaire. En 1978, il débute son activité dans l'industrie de l'électronique de grande puissance à la société ABB, Asea Brown Boveri à Turgi, où il contribue au développement d'entraînements réglés à fréquence variable. Dès 1985, il exerce la fonction d'assistant technique et de chef de groupe. De 1988 à 1991, il poursuit le développement de nouveaux systèmes d'électronique de puissance dans différents domaines d'application. A. Rufer est l'auteur et co-auteur de plusieurs demandes de brevet, ainsi que de plusieurs publications. De 1991 à 1992, il est chef d'un département de développement d'appareils d'électronique de réglage et de commande pour l'électronique de puissance. Durant son activité professionnelle dans l'industrie, il participe activement à l'enseignement technique dans plusieurs écoles d'ingénieurs.
François MaréchalPh D. in engineering Chemical process engineer
Researcher and lecturer in the field of computer aided process and energy systems engineering.
Lecturer in the mechanical engineering, electrical engineering and environmental sciences engineering in EPFL.
I'm responsible for the Minor in Energy of EPFL and I'm involved in 3 projects of the Competence Center in Energy and Mobility (2nd generation biofuel, Wood SOFC, and gas turbine development with CO2 mitigation) in which i'm contributing to the energy conversion system design and optimisation.
Short summary of my scientific carrer
After a graduation in chemical engineering from the University of Liège, I have obtained a Ph. D. from the University of Liège in the LASSC laboratory of Prof. Kalitventzeff (former president of the European working party on computer aided process engineering). This laboratory was one of the pioneering laboratory in the field of Computer Aided Process Engineering.
In the group of Professor Kalitventzeff, I have worked on the development and the applications of data reconciliation, process modelling and optimisation techniques in the chemical process industry, my experience ranges from nuclear power stations to chemical plants. In the LASSC, I have been responsible from the developments in the field of rational use of energy in the industry. My first research topic has been the methodological development of process integration techniques, combining the use of pinch based methods and of mathematical programming: e.g. for the design of multiperiod heat exchanger networks or Mixed integer non linear programming techniques for the optimal management of utility systems. Fronted with applications in the industry, my work then mainly concentrated on the optimal integration of utility systems considering not only the energy requirements but the cost of the energy requirements and the energy conversion systems. I developed methods for analysing and integrating the utility system, the steam networks, combustion (including waste fuel), gas turbines or other advanced energy conversion systems (cogeneration, refrigeration and heat). The techniques applied uses operation research tools like mixed integer linear programming and exergy analysis. In order to evaluate the results of the utility integration, a new graphical method for representing the integration of the utility systems has been developed. By the use of MILP techniques, the method developed for the utility integration has been extended to handled site scale problems, to incorporate environmental constraints and reduce the water usage. This method (the Effect Modelling and Optimisation method) has been successfully applied to the chemical plants industry, the pulp and paper industry and the power plant. Instead of focusing on academic problems, I mainly developed my research based on industrial applications that lead to valuable and applicable patented results. Recently the methods developed have been extended to realise the thermoeconomic optimisation of integrated systems like fuel cells. My present R&D work concerns the application of multi-objective optimisation strategies in the design of processes and integrated energy conversion systems.
Since 2001, Im working in the Industrial Energy Systems Laboratory (LENI) of Ecole Polytechnique fédérale de Lausanne (EPFL) where Im leading the R&D activities in the field of Computer Aided Analysis and Design of Industrial Energy Systems with a major focus on sustainable energy conversion system development using thermo-economic optimisation methodologies. A part from the application and the development of process integration techniques, that remains my major field of expertise, the applications concern :
Rational use of water and energy in Industrial processes and industrial production sites : projects with NESTLE, EDF, VEOLIA and Borregaard (pulp and paper).Energy conversion and process design : biofuels from waste biomass (with GASNAT, EGO and PSI), water dessalination and waste water treatment plant (VEOLIA), power plant design (ALSTOM), Energy conversion from geothermal sources (BFE). Integrated energy systems in urban areas : together with SCANE and SIG (GE) and IEA annexe 42 for micro-cogeneration systems.
I as well contributed to the definition of the 2000 Watt society and to studies concerning the emergence of green technologies on the market in the frame of the Alliance for Global Sustainability.
Alfio QuarteroniOf italian nationality, Alfio Quarteroni was born on May 30th 1952. He pursued his studies in mathematics at University of Pavia and at University of Paris VI. In 1986 he was nominated full professor at Catholic University of Brescia, later professor in mathematics at University of Minnesota at Minneapolis and professor in numerical analysis at Politecnico di Milano. He is designated full professor in 1997 and enters into service with EPFL in 1998. At EPFL, he teaches numerical analysis to engineers and mathematicians and holds specialized courses about mathematical modelling and scientific computing for master and PhD students. He had been scientific director of CRS4, plenary speaker of more than two hundred international conferences; he is member of the European Academy of Sciences, the Italian Academy of Sciences, the Lombard Academy of Science and Letters. He is Editor in Chief of two book series (MS&A and Unitext) by Springer, associate editor of 25 international journals. He has been plenary speaker at the International Congress of Mathematicians ICM2006. He had been responsible of several European research networks. His team has carried out the aerodynamic and hydrodynamic simulations for the optimization of Alinghi, the Swiss sailing yacht that has won two editions of the America's Cup in 2003 and 2007.
Nikolaos StergiopoulosEducation
MTE, Managing the Technology Enterprise Program (2000), IMD, Lausanne
Ph.D. in Biomedical Engineering & Engineering Mechanics (1990) Iowa State University, Ames, Iowa.
MS in Biomedical Engineering (1987) Iowa State University, Ames, Iowa.
Diploma in Mechanical Engineering (1985) National Technical University of Athens.
Professional Activities
2002 - present: Professor and director of LHTC
2010 - present: Founder and director of Rheon Medical SA, Préverenges, Switzerland
2008 - present: Founder and director of Antlia S.A., PSE-C, EPFL campus, Switzerland
1998 - 2007: Founder and Scientific Director of EndoArt S.A., Lausanne, Switzerland
1996 - 2002: Assistant professor at the Biomedical Engineering Laboratory, Swiss Federal Institute of Technology, Lausanne, Switzerland.
1991 - 1996: Research Associate at Swiss Federal Institute of Technology - Lausanne
1990 - 1991: Lecturer, Iowa State University
David Atienza AlonsoDavid Atienza Alonso is an associate professor of EE and director of the Embedded Systems Laboratory (ESL) at EPFL, Switzerland. He received his MSc and PhD degrees in computer science and engineering from UCM, Spain, and IMEC, Belgium, in 2001 and 2005, respectively. His research interests include system-level design methodologies for multi-processor system-on-chip (MPSoC) servers and edge AI architectures. Dr. Atienza has co-authored more than 350 papers, one book, and 12 patents in these previous areas. He has also received several recognitions and award, among them, the ICCAD 10-Year Retrospective Most Influential Paper Award in 2020, Design Automation Conference (DAC) Under-40 Innovators Award in 2018, the IEEE TCCPS Mid-Career Award in 2018, an ERC Consolidator Grant in 2016, the IEEE CEDA Early Career Award in 2013, the ACM SIGDA Outstanding New Faculty Award in 2012, and a Faculty Award from Sun Labs at Oracle in 2011. He has also earned two best paper awards at the VLSI-SoC 2009 and CST-HPCS 2012 conference, and five best paper award nominations at the DAC 2013, DATE 2013, WEHA-HPCS 2010, ICCAD 2006, and DAC 2004 conferences. He serves or has served as associate editor of IEEE Trans. on Computers (TC), IEEE Design & Test of Computers (D&T), IEEE Trans. on CAD (T-CAD), IEEE Transactions on Sustainable Computing (T-SUSC), and Elsevier Integration. He was the Technical Program Chair of DATE 2015 and General Chair of DATE 2017. He served as President of IEEE CEDA in the period 2018-2019 and was GOLD member of the Board of Governors of IEEE CASS from 2010 to 2012. He is a Distinguished Member of ACM and an IEEE Fellow.
Mario PaoloneMario Paolone received the M.Sc. (with honors) and the Ph.D. degree in electrical engineering from the University of Bologna, Italy, in 1998 and 2002, respectively. In 2005, he was appointed assistant professor in power systems at the University of Bologna where he was with the Power Systems laboratory until 2011. In 2010, he received the Associate Professor eligibility from the Politecnico di Milano, Italy. Since 2011 he joined the Swiss Federal Institute of Technology, Lausanne, Switzerland, where he is now Full Professor, Chair of the Distributed Electrical Systems laboratory and Head of the Swiss Competence Center for Energy Research (SCCER) FURIES (Future Swiss Electrical infrastructure). He was co-chairperson of the technical programme committees of the 9th edition of the International Conference of Power Systems Transients (IPST 2009) and of the 2016 Power Systems Computation Conference (PSCC 2016). He was chair of the technical programme committee of the 2018 Power Systems Computation Conference (PSCC 2018). In 2013, he was the recipient of the IEEE EMC Society Technical Achievement Award. He was co-author of several papers that received the following awards: best IEEE Transactions on EMC paper award for the year 2017, in 2014 best paper award at the 13th International Conference on Probabilistic Methods Applied to Power Systems, Durham, UK, in 2013 Basil Papadias best paper award at the 2013 IEEE PowerTech, Grenoble, France, in 2008 best paper award at the International Universities Power Engineering Conference (UPEC). He was the founder Editor-in-Chief of the Elsevier journal Sustainable Energy, Grids and Networks and was Associate Editor of the IEEE Transactions on Industrial Informatics. His research interests are in power systems with particular reference to real-time monitoring and operation, power system protections, power systems dynamics and power system transients. Mario Paolone is author or coauthor of over 300 scientific papers published in reviewed journals and international conferences.
Olivier SchneiderAfter his thesis defense in particle physics in 1989 at University of Lausanne, Olivier Schneider joins LBL, the Lawrence Berkeley Laboratory (California), to work on the CDF experiment at the Tevatron in Fermilab (Illinois), first as a research fellow supported by the Swiss National Science Foundation, and later as a post-doc at LBL. He participates in the construction and commissioning of the first silicon vertex detector to operate successfully at a hadron collider; this detector enabled the discovery of the sixth quark, named "top". Since 1994, he comes back to Europe and participates in the ALEPH experiment at CERN's Large Electron-Positron Collider, as CERN fellow and then as CERN scientific staff. He specializes in heavy flavour physics. In 1998, he becomes associate professor at University of Lausanne, then extraordinary professor at the Swiss Institute of Technology Lausanne (EPFL) in 2003, and finally full professor at EPFL in 2010. Having worked since 1997 on the preparation of the LHCb experiment at CERN's Large Hadron Collider, which started operation in 2009, he is now analyzing the first data. He also contributes since 2001 to the exploitation of the data recorded at the Belle experiment (KEK laboratory, Tsukuba, Japan). These two experiments study mainly the decays of hadrons containing a b quark, as well CP violation, i.e. the non-invariance under the symmetry between matter and antimatter.