Jean-Yves Le BoudecJean-Yves Le Boudec is full professor at EPFL and fellow of the IEEE. He graduated from Ecole Normale Superieure de Saint-Cloud, Paris, where he obtained the Agregation in Mathematics in 1980 (rank 4) and received his doctorate in 1984 from the University of Rennes, France. From 1984 to 1987 he was with INSA/IRISA, Rennes. In 1987 he joined Bell Northern Research, Ottawa, Canada, as a member of scientific staff in the Network and Product Traffic Design Department. In 1988, he joined the IBM Zurich Research Laboratory where he was manager of the Customer Premises Network Department. In 1994 he joined EPFL as associate professor. His interests are in the performance and architecture of communication systems. In 1984, he developed analytical models of multiprocessor, multiple bus computers. In 1990 he invented the concept called "MAC emulation" which later became the ATM forum LAN emulation project, and developed the first ATM control point based on OSPF. He also launched public domain software for the interworking of ATM and TCP/IP under Linux. He proposed in 1998 the first solution to the failure propagation that arises from common infrastructures in the Internet. He contributed to network calculus, a recent set of developments that forms a foundation to many traffic control concepts in the internet. He earned the Infocom 2005 Best Paper award, with Milan Vojnovic, for elucidating the perfect simulation and stationarity of mobility models, the 2008 IEEE Communications Society William R. Bennett Prize in the Field of Communications Networking, with Bozidar Radunovic, for the analysis of max-min fairness and the 2009 ACM Sigmetrics Best Paper Award, with Augustin Chaintreau and Nikodin Ristanovic, for the mean field analysis of the age of information in gossiping protocols. He is or has been on the program committee or editorial board of many conferences and journals, including Sigcomm, Sigmetrics, Infocom, Performance Evaluation and ACM/IEEE Transactions on Networking. He co-authored the book "Network Calculus" (2001) with Patrick Thiran and is the author of the book "Performance Evaluation of Computer and Communication Systems" (2010).
Mario PaoloneMario Paolone received the M.Sc. (with honors) and the Ph.D. degree in electrical engineering from the University of Bologna, Italy, in 1998 and 2002, respectively. In 2005, he was appointed assistant professor in power systems at the University of Bologna where he was with the Power Systems laboratory until 2011. In 2010, he received the Associate Professor eligibility from the Politecnico di Milano, Italy. Since 2011 he joined the Swiss Federal Institute of Technology, Lausanne, Switzerland, where he is now Full Professor, Chair of the Distributed Electrical Systems laboratory and Head of the Swiss Competence Center for Energy Research (SCCER) FURIES (Future Swiss Electrical infrastructure). He was co-chairperson of the technical programme committees of the 9th edition of the International Conference of Power Systems Transients (IPST 2009) and of the 2016 Power Systems Computation Conference (PSCC 2016). He was chair of the technical programme committee of the 2018 Power Systems Computation Conference (PSCC 2018). In 2013, he was the recipient of the IEEE EMC Society Technical Achievement Award. He was co-author of several papers that received the following awards: best IEEE Transactions on EMC paper award for the year 2017, in 2014 best paper award at the 13th International Conference on Probabilistic Methods Applied to Power Systems, Durham, UK, in 2013 Basil Papadias best paper award at the 2013 IEEE PowerTech, Grenoble, France, in 2008 best paper award at the International Universities Power Engineering Conference (UPEC). He was the founder Editor-in-Chief of the Elsevier journal Sustainable Energy, Grids and Networks and was Associate Editor of the IEEE Transactions on Industrial Informatics. His research interests are in power systems with particular reference to real-time monitoring and operation, power system protections, power systems dynamics and power system transients. Mario Paolone is author or coauthor of over 300 scientific papers published in reviewed journals and international conferences.
Alfred RuferOriginaire de Diessbach (BE), Alfred Rufer est né en 1951. Il obtient en 1976 le diplôme d'ingénieur électricien de l'EPFL et poursuit son activité dans le même établissement en tant qu'assistant à la chaire d'électronique industrielle. En 1993, il est nommé professeur-assistant au Laboratoire d'électronique industrielle. Au début 1996, il est nommé professeur extraordinaire. En 1978, il débute son activité dans l'industrie de l'électronique de grande puissance à la société ABB, Asea Brown Boveri à Turgi, où il contribue au développement d'entraînements réglés à fréquence variable. Dès 1985, il exerce la fonction d'assistant technique et de chef de groupe. De 1988 à 1991, il poursuit le développement de nouveaux systèmes d'électronique de puissance dans différents domaines d'application. A. Rufer est l'auteur et co-auteur de plusieurs demandes de brevet, ainsi que de plusieurs publications. De 1991 à 1992, il est chef d'un département de développement d'appareils d'électronique de réglage et de commande pour l'électronique de puissance. Durant son activité professionnelle dans l'industrie, il participe activement à l'enseignement technique dans plusieurs écoles d'ingénieurs.
Colin Neil JonesColin Jones is an Associate Professor in the Automatic Control Laboratory at the Ecole Polytechnique Federale de Lausanne (EPFL) in Switzerland. He was a Senior Researcher at the Automatic Control Lab at ETH Zurich until 2011 and obtained a PhD in 2005 from the University of Cambridge for his work on polyhedral computational methods for constrained control. Prior to that, he was at the University of British Columbia in Canada, where he took a BASc and MASc in Electrical Engineering and Mathematics. Colin has worked in a variety of industrial roles, ranging from commercial building control to the development of custom optimization tools focusing on retail human resource scheduling. His current research interests are in the theory and computation of predictive control and optimization, and their application to green energy generation, distribution and management.
Daniel ThalmannProf. Daniel Thalmann is Honorary Professor at EPFL and Director of Research development at MIRALab Sarl. He has been Visiting Professor at The Institute for Media Innovation (Nanyang Technological University, Singapore) from 2009 to 2017. He is a pioneer in research on Virtual Humans. His current research interests include Real-time Virtual Humans in Virtual Reality, crowd simulation, and 3D Interaction. Daniel Thalmann has been the Founder of The Virtual Reality Lab (VRlab) at EPFL, Switzerland, Professor at The University of Montreal and Visiting Professor/ Researcher at CERN, University of Nebraska, University of Tokyo, and National University of Singapore. Until October 2010, he was the President of the Swiss Association of Research in Information Technology and one Director of the European Research Consortium in Informatics and Mathematics (ERCIM). He is coeditor-in-chief of the Journal of Computer Animation and Virtual Worlds, and member of the editorial board of 6 other journals. Daniel Thalmann was member of numerous Program Committees, Program Chair and CoChair of several conferences including IEEE VR, ACM VRST, and ACM VRCAI. Daniel Thalmann has published more than 500 papers in Graphics, Animation, and Virtual Reality. He is coeditor of 30 books, and coauthor of several books including 'Crowd Simulation' (second edition 2012) and 'Stepping Into Virtual Reality' (2007), published by Springer. He received his PhD in Computer Science in 1977 from the University of Geneva and an Honorary Doctorate (Honoris Causa) from University Paul- Sabatier in Toulouse, France, in 2003. He also received the Eurographics Distinguished Career Award in 2010 and the 2012 Canadian Human Computer Communications Society Achievement Award. Wikipedia: http://en.wikipedia.org/wiki/Daniel_Thalmann Marilyne AndersenMarilyne Andersen is a Full Professor of Sustainable Construction Technologies and heads the Laboratory of Integrated Performance in Design (LIPID) that she launched in the Fall of 2010. She was Dean of the School of Architecture, Civil and Environmental Engineering (ENAC) at EPFL from 2013 to 2018 and is the Academic Director of the Smart Living Lab in Fribourg. She also co-leads the Student Kreativity and Innovation Laboratory (SKIL) at ENAC. Before joining EPFL as a faculty, she was an Assistant Professor then Associate Professor tenure-track in the Building Technology Group of the MIT School of Architecture and Planning and the Head of the MIT Daylighting Lab that she founded in 2004. She has also been Invited Professor at the Singapore University of Technology and Design in 2019. Marilyne Andersen owns a Master of Science in Physics and specialized in daylighting through her PhD in Building Physics at EPFL in the Solar Energy and Building Physics Laboratory (LESO) and as a Visiting Scholar in the Building Technologies Department of the Lawrence Berkeley National Laboratory in California. Her research lies at the interface between science, engineering and architectural design with a dedicated emphasis on the impact of daylight on building occupants. Focused on questions of comfort, perception and health and their implications on energy considerations, these research efforts aim towards a deeper integration of the design process with daylighting performance and indoor comfort, by reaching out to various fields of science, from chronobiology and neuroscience to psychophysics and computer graphics. She is leveraging this research in practice through OCULIGHT dynamics, a startup company she co-founded, which offers specialized consulting services on daylight performance and its psycho-physiological effects on building occupants. She is the author of more than 200 papers published in peer-reviewed journals and international conferences and the recipient of several grants and awards including: the Daylight Award for Research (2016), eleven publication awards and distinctions (2009, 2011, 2012, 2015, 2018, 2019) including the Taylor Technical Talent Award 2009 granted by the Illuminating Engineering Society, the 3M Non-Tenured Faculty Grant (2009), the Mitsui Career Development Professorship at MIT (2008) and the EPFL prize of the Chorafas Foundation awarded to her PhD thesis in Sustainability (2005). Her research or teaching has been supported by professional, institutional and industrial organizations such as: the Swiss and the U.S. National Science Foundations, the Velux Foundation, the European Horizon 2020 program, the Boston Society of Architects, the MIT Energy Initiative and InnoSuisse. She was the leader and faculty advisor of the Swiss Team and its NeighborHub project, who won the U.S. Solar Decathlon 2017 competition with 8 podiums out of 10 contests. She is a member of the Board of the LafargeHolcim Foundation for Sustainable Construction and Head of its Academic Committee. She is also a member of the Editorial Board of the journal Building and Environment by Elsevier, and of the journals LEUKOS (of the Illuminating Engineering Society) and Buildings and Cities, by Taylor and Francis. She is expert to the Innovation Council of InnoSuisse and Founding member as well as Board member of the Foundation Culture du Bâti (CUB), and is also founding member of the Daylight Academy and an active member of several committees of the Illuminating Engineering Society (IES) and International Commission on Illumination (CIE).
François MaréchalPh D. in engineering Chemical process engineer
Researcher and lecturer in the field of computer aided process and energy systems engineering.
Lecturer in the mechanical engineering, electrical engineering and environmental sciences engineering in EPFL.
I'm responsible for the Minor in Energy of EPFL and I'm involved in 3 projects of the Competence Center in Energy and Mobility (2nd generation biofuel, Wood SOFC, and gas turbine development with CO2 mitigation) in which i'm contributing to the energy conversion system design and optimisation.
Short summary of my scientific carrer
After a graduation in chemical engineering from the University of Liège, I have obtained a Ph. D. from the University of Liège in the LASSC laboratory of Prof. Kalitventzeff (former president of the European working party on computer aided process engineering). This laboratory was one of the pioneering laboratory in the field of Computer Aided Process Engineering.
In the group of Professor Kalitventzeff, I have worked on the development and the applications of data reconciliation, process modelling and optimisation techniques in the chemical process industry, my experience ranges from nuclear power stations to chemical plants. In the LASSC, I have been responsible from the developments in the field of rational use of energy in the industry. My first research topic has been the methodological development of process integration techniques, combining the use of pinch based methods and of mathematical programming: e.g. for the design of multiperiod heat exchanger networks or Mixed integer non linear programming techniques for the optimal management of utility systems. Fronted with applications in the industry, my work then mainly concentrated on the optimal integration of utility systems considering not only the energy requirements but the cost of the energy requirements and the energy conversion systems. I developed methods for analysing and integrating the utility system, the steam networks, combustion (including waste fuel), gas turbines or other advanced energy conversion systems (cogeneration, refrigeration and heat). The techniques applied uses operation research tools like mixed integer linear programming and exergy analysis. In order to evaluate the results of the utility integration, a new graphical method for representing the integration of the utility systems has been developed. By the use of MILP techniques, the method developed for the utility integration has been extended to handled site scale problems, to incorporate environmental constraints and reduce the water usage. This method (the Effect Modelling and Optimisation method) has been successfully applied to the chemical plants industry, the pulp and paper industry and the power plant. Instead of focusing on academic problems, I mainly developed my research based on industrial applications that lead to valuable and applicable patented results. Recently the methods developed have been extended to realise the thermoeconomic optimisation of integrated systems like fuel cells. My present R&D work concerns the application of multi-objective optimisation strategies in the design of processes and integrated energy conversion systems.
Since 2001, Im working in the Industrial Energy Systems Laboratory (LENI) of Ecole Polytechnique fédérale de Lausanne (EPFL) where Im leading the R&D activities in the field of Computer Aided Analysis and Design of Industrial Energy Systems with a major focus on sustainable energy conversion system development using thermo-economic optimisation methodologies. A part from the application and the development of process integration techniques, that remains my major field of expertise, the applications concern :
Rational use of water and energy in Industrial processes and industrial production sites : projects with NESTLE, EDF, VEOLIA and Borregaard (pulp and paper).Energy conversion and process design : biofuels from waste biomass (with GASNAT, EGO and PSI), water dessalination and waste water treatment plant (VEOLIA), power plant design (ALSTOM), Energy conversion from geothermal sources (BFE). Integrated energy systems in urban areas : together with SCANE and SIG (GE) and IEA annexe 42 for micro-cogeneration systems.
I as well contributed to the definition of the 2000 Watt society and to studies concerning the emergence of green technologies on the market in the frame of the Alliance for Global Sustainability.
Paolo RicciPaolo Ricci earned his masters degree in nuclear engineering at the Politecnico di Torino, Turin (Italy) in 2000. His doctoral studies were conducted at the Los Alamos National Laboratory, with focus on kinetic simulation of magnetic reconnection in the Earth's magnetotail. He spent two-and-a-half years as a postdoctoral researcher at Dartmouth College's Department of Physics and Astronomy, where he worked on gyrokinetic simulations of the Z pinch. He joined the EPFL's Swiss Plasma Center (SPC), as a EURATOM fellow in 2006, was named Tenure Track Assistant Professor in June 2010, and Associate Professor in August 2016. He is at the head of the SPC theory group. Paolo Ricci is the recipient of the 2016 Section de Physique Teaching Prize and of the 2021 Craie d'Or award from the EPFL physics bachelor students.
Alcherio MartinoliI received my Diploma in Electrical Engineering from the Swiss Federal Institute of Technology in Zurich (ETHZ), and a Ph.D. in Computer Science from the Swiss Federal Institute of Technology in Lausanne (EPFL). I am currently an Associate Professor at the School of Architecture, Civil, and Environmental Engineering and the head of the Distributed Intelligent Systems and Algorithms Laboratory. Before joining EPFL I carried out research activities at the Institute of Biomedical Engineering of the ETHZ, at the Institute of Industrial Automation of the Spanish Research Council in Madrid, Spain, and at the California Institute of Technology, Pasadena, U.S.A. Additional information can be found on my full CV.