Unit

Chair of Business Analytics

Laboratory
Related publications (40)

Novel Ordering-based Approaches for Causal Structure Learning in the Presence of Unobserved Variables

We propose ordering-based approaches for learning the maximal ancestral graph (MAG) of a structural equation model (SEM) up to its Markov equivalence class (MEC) in the presence of unobserved variables. Existing ordering-based methods in the literature rec ...
Association for the Advancement of Artificial Intelligence (AAAI)2023

Augmented Lagrangian Methods for Provable and Scalable Machine Learning

Mehmet Fatih Sahin

Non-convex constrained optimization problems have become a powerful framework for modeling a wide range of machine learning problems, with applications in k-means clustering, large- scale semidefinite programs (SDPs), and various other tasks. As the perfor ...
EPFL2023

Results on Sparse Integer Programming and Geometric Independent Sets

Jana Tabea Cslovjecsek

An integer linear program is a problem of the form max{c^T x : Ax=b, x >= 0, x integer}, where A is in Z^(n x m), b in Z^m, and c in Z^n.Solving an integer linear program is NP-hard in general, but there are several assumptions for which it becomes fixed p ...
EPFL2023

Universal and adaptive methods for robust stochastic optimization

Ali Kavis

Within the context of contemporary machine learning problems, efficiency of optimization process depends on the properties of the model and the nature of the data available, which poses a significant problem as the complexity of either increases ad infinit ...
EPFL2023

Equivariant Neural Architectures for Representing and Generating Graphs

Clément Arthur Yvon Vignac

Graph machine learning offers a powerful framework with natural applications in scientific fields such as chemistry, biology and material sciences. By representing data as a graph, we encode the prior knowledge that the data is composed of a set of entitie ...
EPFL2023

Longitudinal incremental propensity score interventions for limited resource settings

Mats Julius Stensrud, Aaron Leor Sarvet

Many real‐life treatments are of limited supply and cannot be provided to all individuals in the population. For example, patients on the liver transplant waiting list usually cannot be assigned a liver transplant immediately at the time they reach highest ...
2023

Causal Discovery in Probabilistic Networks with an Identifiable Causal Effect

Negar Kiyavash, Ehsan Mokhtarian, Sina Akbari, Fateme Jamshidi, Seyed Jalal Etesami

Causal identification is at the core of the causal inference literature, where complete algorithms have been proposed to identify causal queries of interest. The validity of these algorithms hinges on the restrictive assumption of having access to a correc ...
2022

Minimum Cost Intervention Design for Causal Effect Identification

Negar Kiyavash, Sina Akbari, Seyed Jalal Etesami

Pearl's do calculus is a complete axiomatic approach to learn the identifiable causal effects from observational data. When such an effect is not identifiable, it is necessary to perform a collection of often costly interventions in the system to learn the ...
PMLR2022

A Unified Experiment Design Approach for Cyclic and Acyclic Causal Models

Negar Kiyavash, Ehsan Mokhtarian, Saber Salehkaleybar

We study experiment design for unique identification of the causal graph of a system where the graph may contain cycles. The presence of cycles in the structure introduces major challenges for experiment design as, unlike acyclic graphs, learning the skele ...
2022

Predicting in Uncertain Environments: Methods for Robust Machine Learning

Paul Thierry Yves Rolland

One of the main goal of Artificial Intelligence is to develop models capable of providing valuable predictions in real-world environments. In particular, Machine Learning (ML) seeks to design such models by learning from examples coming from this same envi ...
EPFL2022

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.