Sous-groupe normalEn théorie des groupes, un sous-groupe normal (également appelé sous-groupe distingué ou sous-groupe invariantLien web|langue=fr|titre=Introduction à la théorie des groupes et de leurs représentations|auteur=Jean-Bernard Zuber|url=) H d'un groupe G est un sous-groupe globalement stable par l'action de G sur lui-même par conjugaison. Les sous-groupes normaux interviennent naturellement dans la définition du quotient d'un groupe. Les sous-groupes normaux de G sont exactement les noyaux des morphismes définis sur G.
RésultantEn mathématiques, le résultant, ou déterminant de Sylvester, est une notion qui s'applique à deux polynômes. Elle est utilisée en théorie de Galois, en théorie algébrique des nombres, en géométrie algébrique et dans bien d'autres domaines utilisant les polynômes. Le résultant de deux polynômes est un scalaire qui est nul si, et seulement si, les deux polynômes ont un facteur commun. Il peut être calculé à partir des coefficients des polynômes à l'aide d'un déterminant.
Cubic fieldIn mathematics, specifically the area of algebraic number theory, a cubic field is an algebraic number field of degree three. If K is a field extension of the rational numbers Q of degree [K:Q] = 3, then K is called a cubic field. Any such field is isomorphic to a field of the form where f is an irreducible cubic polynomial with coefficients in Q. If f has three real roots, then K is called a totally real cubic field and it is an example of a totally real field. If, on the other hand, f has a non-real root, then K is called a complex cubic field.
Cycles and fixed pointsIn mathematics, the cycles of a permutation pi of a finite set S correspond bijectively to the orbits of the subgroup generated by pi acting on S. These orbits are subsets of S that can be written as , such that pi(ci) = ci + 1 for i = 1, ..., n − 1, and pi(cn) = c1. The corresponding cycle of pi is written as ( c1 c2 ... cn ); this expression is not unique since c1 can be chosen to be any element of the orbit. The size n of the orbit is called the length of the corresponding cycle; when n = 1, the single element in the orbit is called a fixed point of the permutation.
Objet exponentielEn mathématiques, et plus particulièrement en théorie des catégories, un objet exponentiel est un équivalent catégorique à un espace fonctionnel en théorie des ensembles. Les catégories avec tous les produits finis et tous les objets exponentiels sont appelées catégories cartésiennes fermées. Un objet exponentiel peut aussi être appelé un objet puissance ou objet des morphismes. Soit C une catégorie avec produits et soient Y et Z des objets de C. L'objet exponentiel ZY peut être défini comme un morphisme universel du foncteur –×Y à Z.
Fonction symétriqueEn mathématiques, une fonction symétrique est une fonction invariante par permutation de ses variables. Le cas le plus fréquent est celui d'une fonction polynomiale symétrique, donnée par un polynôme symétrique. Une fonction en n variables est symétrique si pour toute permutation s de l'ensemble d'indices {1, ... ,n}, l'égalité suivante est vérifiée : Pour n = 1, toute fonction est symétrique. Pour n = 2, la fonction est symétrique, alors que la fonction ne l'est pas. Une équation est une équation symétrique lorsque la fonction est symétrique.
Théorème de WilsonEn mathématiques, plus précisément en arithmétique élémentaire, le théorème de Wilson énonce qu'un entier p plus grand que 1 est premier si et seulement si la factorielle de p – 1 est congrue à –1 modulo p. Cette caractérisation des nombres premiers est assez anecdotique et ne constitue pas un test de primalité efficace. Son principal intérêt réside dans son histoire et dans la relative simplicité de son énoncé et de ses démonstrations. Ici, le symbole « ! » désigne la fonction factorielle et le symbole « .
Charles HermiteCharles Hermite (1822-1901) est un mathématicien français. Ses travaux concernent surtout la théorie des nombres, les formes quadratiques, les polynômes orthogonaux, les fonctions elliptiques et les équations différentielles. Plusieurs entités mathématiques sont qualifiées d'hermitiennes en son honneur. Il est aussi connu comme l'un des premiers à utiliser les matrices. Il fut le premier à montrer, en 1873, qu'une constante naturelle de l'analyse, en l'occurrence le nombre e, base des logarithmes naturels, est transcendant.
Dimension homologiqueEn algèbre, la dimension homologique d'un anneau R diffère en général de sa dimension de Krull et se définit à partir des résolutions projectives ou injectives des R-modules. On définit également la dimension faible à partir des résolutions plates des R-modules. La dimension de Krull (respectivement homologique, faible) de R peut être vue comme une mesure de l'éloignement de cet anneau par rapport à la classe des anneaux artiniens (resp. semi-simples, ), cette dimension étant nulle si, et seulement si R est artinien (resp.
InverseEn mathématiques, l'inverse d'un élément x (s'il existe) est le nom donné à l'élément symétrique, lorsque la loi est notée multiplicativement. Dans le cas réel, il s'agit du nombre qui, multiplié par x, donne 1. On le note x ou 1/x. Par exemple, dans , l'inverse de 3 est , puisque . Soit un monoïde, un ensemble muni d'une loi de composition interne associative, qu'on note , et d'un élément neutre pour noté 1. Un élément est dit inversible à gauche (respectivement inversible à droite) s'il existe un élément tel que (respectivement ).