PairingIn mathematics, a pairing is an R-bilinear map from the Cartesian product of two R-modules, where the underlying ring R is commutative. Let R be a commutative ring with unit, and let M, N and L be R-modules. A pairing is any R-bilinear map . That is, it satisfies and for any and any and any . Equivalently, a pairing is an R-linear map where denotes the tensor product of M and N. A pairing can also be considered as an R-linear map which matches the first definition by setting A pairing is called perfect if the above map is an isomorphism of R-modules.
Décomposition primaireLa décomposition primaire est une généralisation de la décomposition d'un nombre entier en facteurs premiers. Cette dernière décomposition, connue depuis Gauss (1832) sous le nom de théorème fondamental de l'arithmétiqueGauss 1832., s'étend naturellement au cas d'un élément d'un anneau principal. Une décomposition plus générale est celle d'un idéal d'un anneau de Dedekind en produit d'idéaux premiers; elle a été obtenue en 1847 par Kummer (dans le formalisme encore peu maniable des « nombres idéaux ») à l'occasion de ses recherches sur le dernier théorème de FermatKummer 1847.
Plus grand commun diviseurEn arithmétique élémentaire, le plus grand commun diviseur ou PGCD de deux nombres entiers non nuls est le plus grand entier qui les divise simultanément. Par exemple, le PGCD de 20 et de 30 est 10, puisque leurs diviseurs communs sont 1, 2, 5 et 10. Cette notion s'étend aux entiers relatifs grâce aux propriétés de la division euclidienne. Elle se généralise aussi aux anneaux euclidiens comme l'anneau des polynômes sur un corps commutatif. La notion de PGCD peut être définie dans tout anneau commutatif.
Morphisme de groupesUn morphisme de groupes ou homomorphisme de groupes est une application entre deux groupes qui respecte la structure de groupe. Plus précisément, c'est un morphisme de magmas d'un groupe dans un groupe , c'est-à-dire une application telle que et l'on en déduit alors que f(e) = e (où e et e désignent les neutres respectifs de G et G) et ∀x ∈ G f(x) = [f(x)]. donc ; en composant par l'inverse de , on obtient (autrement dit, un morphisme de groupes conserve l'idempotence, et l'élément neutre d'un groupe est son unique élément idempotent).
Group isomorphismIn abstract algebra, a group isomorphism is a function between two groups that sets up a one-to-one correspondence between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two groups, then the groups are called isomorphic. From the standpoint of group theory, isomorphic groups have the same properties and need not be distinguished.
Addition matriciellevignette|Illustration d'une addition matricielle L'addition matricielle est une opération mathématique qui consiste à produire une matrice qui est le résultat de l'addition de deux matrices de même type. L'addition des matrices est définie pour deux matrices de même type. La somme de deux matrices de type (m, n), et , notée A + B, est à nouveau une matrice de type (m, n) obtenue en additionnant les éléments correspondants, i.e., pour tous i, j, Par exemple: L'ensemble des matrices de type (m, n) avec la loi d'addition forment un groupe abélien.
Produit matricielLe produit matriciel désigne la multiplication de matrices, initialement appelé la « composition des tableaux ». Il s'agit de la façon la plus fréquente de multiplier des matrices entre elles. En algèbre linéaire, une matrice A de dimensions m lignes et n colonnes (matrice m×n) représente une application linéaire ƒ d'un espace de dimension n vers un espace de dimension m. Une matrice colonne V de n lignes est une matrice n×1, et représente un vecteur v d'un espace vectoriel de dimension n. Le produit A×V représente ƒ(v).
Racine carrée de cinqEn mathématiques, la racine carrée de cinq, notée ou 5, est un nombre réel remarquable ; c'est l'unique réel positif dont le carré est égal à 5. Il vaut approximativement 2,236. C'est un irrationnel quadratique et un entier quadratique (entier algébrique de degré 2). le nombre 5 ayant deux racines carrées réelles, devrait se prononcer « racine carrée positive de cinq », mais il se prononce habituellement « racine carrée de cinq », voire « racine de cinq » pour simplifier. Se prononçait aussi « radical de cinq ».
Vector algebraIn mathematics, vector algebra may mean: Linear algebra, specifically the basic algebraic operations of vector addition and scalar multiplication; see vector space. The algebraic operations in vector calculus, namely the specific additional structure of vectors in 3-dimensional Euclidean space of dot product and especially cross product. In this sense, vector algebra is contrasted with geometric algebra, which provides an alternative generalization to higher dimensions.
Matrice symétriquevignette|Matrice 5x5 symétrique. Les coefficients égaux sont représentés par la même couleur. En algèbre linéaire et multilinéaire, une matrice symétrique est une matrice carrée qui est égale à sa propre transposée, c'est-à-dire telle que a = a pour tous i et j compris entre 1 et n, où les a sont les coefficients de la matrice et n est son ordre. Les coefficients d'une matrice symétrique sont symétriques par rapport à la diagonale principale (du coin en haut à gauche jusqu'à celui en bas à droite).