CS-433: Machine learningMachine learning methods are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and pr
MATH-432: Probability theoryThe course is based on Durrett's text book
Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
MATH-106(f): Analysis IIÉtudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs
variables.
MATH-106(e): Analysis IIÉtudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs
variables.
EE-566: Adaptation and learningIn this course, students learn to design and master algorithms and core concepts related to inference and learning from data and the foundations of adaptation and learning theories with applications.
DH-406: Machine learning for DHThis course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
MATH-502: Distribution and interpolation spacesThe goal of this course is to give an introduction to the theory of distributions and cover the fundamental results of Sobolev spaces including fractional spaces that appear in the interpolation theor
ME-372: Finite element methodL'étudiant acquiert une initiation théorique à la méthode des éléments finis qui constitue la technique la plus courante pour la résolution de problèmes elliptiques en mécanique. Il apprend à applique