Théorie des représentationsLa théorie des représentations est une branche des mathématiques qui étudie les structures algébriques abstraites en représentant leurs éléments comme des transformations linéaires d'espaces vectoriels, et qui étudie les modules sur ces structures algébriques abstraites. Essentiellement, une représentation concrétise un objet algébrique abstrait en décrivant ses éléments par des matrices et les opérations sur ces éléments en termes d'addition matricielle et de produit matriciel.
K-théorie algébriqueEn mathématiques, la K-théorie algébrique est une branche importante de l'algèbre homologique. Son objet est de définir et d'appliquer une suite de foncteurs K de la catégorie des anneaux dans celle des groupes abéliens. Pour des raisons historiques, K et K sont conçus en des termes un peu différents des K pour n ≥ 2. Ces deux K-groupes sont en effet plus accessibles et ont plus d'applications que ceux d'indices supérieurs. La théorie de ces derniers est bien plus profonde et ils sont beaucoup plus difficiles à calculer, ne serait-ce que pour l'anneau des entiers.
Invertible sheafIn mathematics, an invertible sheaf is a sheaf on a ringed space which has an inverse with respect to tensor product of sheaves of modules. It is the equivalent in algebraic geometry of the topological notion of a line bundle. Due to their interactions with Cartier divisors, they play a central role in the study of algebraic varieties. Let (X, OX) be a ringed space. Isomorphism classes of sheaves of OX-modules form a monoid under the operation of tensor product of OX-modules. The identity element for this operation is OX itself.
Catégorie dérivéeLa catégorie dérivée d'une catégorie est une construction, originellement introduite par Jean-Louis Verdier dans sa thèse et reprise dans SGA 41⁄2, qui permet notamment de raffiner et simplifier la théorie des foncteurs dérivés. Elle a amené à plusieurs développements importants, ainsi que des reformulations élégantes par exemple de la théorie des D-modules et des preuves de la qui généralise le vingt-et-unième problème de Hilbert. En particulier, le langage des catégories dérivées permet de simplifier des problèmes exprimés en termes de suites spectrales.
CobordismeEn topologie différentielle, le cobordisme est une relation d'équivalence entre variétés différentielles compactes. Deux variétés compactes M et N sont dites cobordantes ou en cobordisme si leur réunion disjointe peut être réalisée comme le bord d'une variété à bord compacte L. On dit alors que cette variété L est un cobordisme entre M et N, ou bien que L réalise un cobordisme entre M et N. L'existence d'un tel cobordisme implique que M et N soient de même dimension.
Conjecture de HodgeLa conjecture de Hodge est une des grandes conjectures de la géométrie algébrique. Elle établit un lien entre la topologie algébrique d'une variété algébrique complexe non singulière et sa géométrie décrite par des équations polynomiales qui définissent des sous-variétés. Elle provient d'un résultat du mathématicien W. V. D. Hodge qui, entre 1930 et 1940, a enrichi la description de la cohomologie de De Rham afin d'y inclure des structures présentes dans le cas des variétés algébriques (qui peuvent s'étendre à d'autres cas).
Resolution of singularitiesIn algebraic geometry, the problem of resolution of singularities asks whether every algebraic variety V has a resolution, a non-singular variety W with a proper birational map W→V. For varieties over fields of characteristic 0 this was proved in Hironaka (1964), while for varieties over fields of characteristic p it is an open problem in dimensions at least 4. Originally the problem of resolution of singularities was to find a nonsingular model for the function field of a variety X, in other words a complete non-singular variety X′ with the same function field.
Théorème de l'indice d'Atiyah-SingerEn mathématiques, et plus précisément en géométrie différentielle, le théorème de l'indice d'Atiyah-Singer, démontré par Michael Atiyah et Isadore Singer en 1963, affirme que pour un opérateur différentiel elliptique sur une variété différentielle compacte, l’indice analytique (lié à la dimension de l'espace des solutions) est égal à l’indice topologique (défini à partir d'invariants topologiques). De nombreux autres théorèmes, comme le théorème de Riemann-Roch, en sont des cas particuliers, et il a des applications en physique théorique.
Cohomologie de DolbeaultEn géométrie complexe et en géométrie différentielle, la cohomologie de Dolbeault est une généralisation simplifiée aux variétés complexes de la cohomologie de De Rham. Pour un fibré vectoriel holomorphe sur une variété complexe , les formes différentielles sur à valeurs dans se définissent comme les sections du fibré . Parmi ces formes différentielles se distinguent celles qui sont localement somme du produit extérieur de formes linéaires et de formes antilinéaires, dites de bidegré .
Variété jacobienneEn géométrie algébrique, la jacobienne d'une courbe est une variété algébrique (en fait une variété abélienne) qui paramètrise les diviseurs de degré 0 sur . C'est un objet fondamental pour l'étude des courbes, et c'est aussi un exemple de variété abélienne qui sert de variété test. On fixe une courbe algébrique projective lisse de genre au moins 1 sur un corps . Dans une première approximation, on peut dire que sa jacobienne est une variété algébrique dont les points correspondent aux diviseurs de degré 0 sur modulo équivalence rationnelle.