Atmospheric radiative transfer codesAn atmospheric radiative transfer model, code, or simulator calculates radiative transfer of electromagnetic radiation through a planetary atmosphere. At the core of a radiative transfer model lies the radiative transfer equation that is numerically solved using a solver such as a discrete ordinate method or a Monte Carlo method. The radiative transfer equation is a monochromatic equation to calculate radiance in a single layer of the Earth's atmosphere. To calculate the radiance for a spectral region with a finite width (e.
Light scattering by particlesLight scattering by particles is the process by which small particles (e.g. ice crystals, dust, atmospheric particulates, cosmic dust, and blood cells) scatter light causing optical phenomena such as the blue color of the sky, and halos. Maxwell's equations are the basis of theoretical and computational methods describing light scattering, but since exact solutions to Maxwell's equations are only known for selected particle geometries (such as spherical), light scattering by particles is a branch of computational electromagnetics dealing with electromagnetic radiation scattering and absorption by particles.
Méthode des éléments finis de frontièreLa méthode des éléments finis de frontière, méthode des éléments frontière ou BEM - Boundary Element Method - en anglais, est une méthode de résolution numérique. Elle se présente comme une alternative à la méthode des éléments finis avec la particularité d'être plus intéressante dans les domaines de modélisation devenant infinis. Méthode des moments (analyse numérique) Méthode des différences finies Méthode des volumes finis Méthode des éléments finis Méthode des points sources distribués Introduction à l
FDTDFDTD est l'acronyme de l'expression anglaise Finite Difference Time Domain. C'est une méthode de calcul de différences finies dans le domaine temporel, qui permet de résoudre des équations différentielles dépendantes du temps. Cette méthode est couramment utilisée en électromagnétisme pour résoudre les équations de Maxwell. Cette méthode a été proposée par Kane S. Yee en 1966. Différences finies Méthode des différences finies Kane Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation, 14, 1966, S.
Théorie de MieEn optique ondulatoire, la théorie de Mie, ou solution de Mie, est une solution particulière des équations de Maxwell décrivant la diffusion élastique – c'est-à-dire sans changement de longueur d'onde – d'une onde électromagnétique plane par une particule sphérique caractérisée par son diamètre et son indice de réfraction complexe. Elle tire son nom du physicien allemand Gustav Mie, qui la décrivit en détail en 1908. Le travail de son prédécesseur Ludvig Lorenz est aujourd'hui reconnu comme « empiriquement équivalent » et l'on parle parfois de la théorie de Lorenz-Mie.
Théorème de réciprocité (Électricité)Le principe de réciprocité, que l'on retrouve également dans d'autres domaines de la physique, s'exprime dans celui de l'électricité grâce à une relation générale entre les courants et les tensions observés aux interfaces de circuits passifs et linéaires. Ce théorème est une conséquence, en électromagnétisme, du théorème de réciprocité de Lorentz qui permet d'arriver à un résultat similaire par le biais de considérations plus fondamentales.
Diffusion RayleighLa diffusion Rayleigh est un mode de diffusion des ondes, par exemple électromagnétiques ou sonores. Elle opère lorsque la longueur d'onde est beaucoup plus grande que la taille des particules diffusantes. On parle de diffusion élastique, car cela se fait sans variation d'énergie, autrement dit l'onde conserve la même longueur d'onde. Elle est nommée d'après John William Strutt Rayleigh, qui en a fait la découverte.
Multiscale modelingMultiscale modeling or multiscale mathematics is the field of solving problems that have important features at multiple scales of time and/or space. Important problems include multiscale modeling of fluids, solids, polymers, proteins, nucleic acids as well as various physical and chemical phenomena (like adsorption, chemical reactions, diffusion). An example of such problems involve the Navier–Stokes equations for incompressible fluid flow. In a wide variety of applications, the stress tensor is given as a linear function of the gradient .
CrépusculeLe crépuscule est la période de la journée entre la nuit et le lever du soleil ou entre coucher du soleil et la nuit caractérisée par une augmentation ou une perte progressive de la luminosité. En dehors de la Terre, cette période existe sur toutes planètes dôtées d'une atmosphère et éclairées par les étoiles autour desquelles elles gravitent. Dans le langage courant, sans précision il correspond au « crépuscule du soir », le moment de la journée situé entre le jour et la nuit, lorsque le ciel s'assombrit progressivement après le coucher du soleil tandis que le « crépuscule du matin » est plus communément appelé « aube ».
Density matrix renormalization groupThe density matrix renormalization group (DMRG) is a numerical variational technique devised to obtain the low-energy physics of quantum many-body systems with high accuracy. As a variational method, DMRG is an efficient algorithm that attempts to find the lowest-energy matrix product state wavefunction of a Hamiltonian. It was invented in 1992 by Steven R. White and it is nowadays the most efficient method for 1-dimensional systems. The first application of the DMRG, by Steven R.