ReproductibilitéLa reproductibilité d'une expérience scientifique est une des conditions qui permettent d'inclure les observations réalisées durant cette expérience dans le processus d'amélioration perpétuelle des connaissances scientifiques. Cette condition part du principe qu'on ne peut tirer de conclusions que d'un événement bien décrit, qui est apparu plusieurs fois, provoqué par des personnes différentes. Cette condition permet de s'affranchir d'effets aléatoires venant fausser les résultats ainsi que des erreurs de jugement ou des manipulations de la part des scientifiques.
Cadre conceptuelUn cadre conceptuel est un outil d'analyse comptant plusieurs variations et contextes. Il est utilisé pour faire des distinctions conceptuelles et organiser des idées. Les cadres conceptuels forts saisissent quelque chose de réel et le font d'une manière facile à retenir et à appliquer. Isaiah Berlin emploie la métaphore d'un renard et d'un hérisson pour faire des distinctions conceptuelles dans la façon dont les philosophes et les auteurs importants voient le monde.
Central composite designIn statistics, a central composite design is an experimental design, useful in response surface methodology, for building a second order (quadratic) model for the response variable without needing to use a complete three-level factorial experiment. After the designed experiment is performed, linear regression is used, sometimes iteratively, to obtain results. Coded variables are often used when constructing this design.
Control variableA control variable (or scientific constant) in scientific experimentation is an experimental element which is constant (controlled) and unchanged throughout the course of the investigation. Control variables could strongly influence experimental results were they not held constant during the experiment in order to test the relative relationship of the dependent variable (DV) and independent variable (IV). The control variables themselves are not of primary interest to the experimenter.
Fractional factorial designIn statistics, fractional factorial designs are experimental designs consisting of a carefully chosen subset (fraction) of the experimental runs of a full factorial design. The subset is chosen so as to exploit the sparsity-of-effects principle to expose information about the most important features of the problem studied, while using a fraction of the effort of a full factorial design in terms of experimental runs and resources.
Méthode des surfaces de réponsesthumb|Expériences statistiques : à gauche, un plan factoriel et, à droite, la surface de réponses obtenue par MSR. En statistiques, la méthode des surfaces de réponses (MSR) a pour but d'explorer les relations entre les variables dépendantes et indépendantes impliquées dans une expérience. Elle est due aux travaux de 1951 de George Box et K. B. Wilson. L'idée principale de leur méthode est l'utilisation d'une séquence d'expériences. Box et Wilson suggèrent d'utiliser un modèle à polynôme de second degré, mais concèdent que ce modèle n'est qu'une approximation.