Tensor rank decompositionIn multilinear algebra, the tensor rank decomposition or the decomposition of a tensor is the decomposition of a tensor in terms of a sum of minimum tensors. This is an open problem. Canonical polyadic decomposition (CPD) is a variant of the rank decomposition which computes the best fitting terms for a user specified . The CP decomposition has found some applications in linguistics and chemometrics. The CP rank was introduced by Frank Lauren Hitchcock in 1927 and later rediscovered several times, notably in psychometrics.
Ordination (statistics)Ordination or gradient analysis, in multivariate analysis, is a method complementary to data clustering, and used mainly in exploratory data analysis (rather than in hypothesis testing). In contrast to cluster analysis, ordination orders quantities in a (usually lower-dimensional) latent space. In the ordination space, quantities that are near each other share attributes (i.e., are similar to some degree), and dissimilar objects are farther from each other.
Low-rank approximationIn mathematics, low-rank approximation is a minimization problem, in which the cost function measures the fit between a given matrix (the data) and an approximating matrix (the optimization variable), subject to a constraint that the approximating matrix has reduced rank. The problem is used for mathematical modeling and data compression. The rank constraint is related to a constraint on the complexity of a model that fits the data. In applications, often there are other constraints on the approximating matrix apart from the rank constraint, e.
Analyse canonique des corrélationsL'analyse canonique des corrélations, parfois aussi nommé analyse des corrélations canoniques, (canonical-correlation analysis en anglais) permet de comparer deux groupes de variables quantitatives appliqués tous deux sur les mêmes individus. Le but de l'analyse canonique est de comparer ces deux groupes de variables pour savoir s'ils décrivent un même phénomène, auquel cas on pourra se passer d'un des deux groupes de variables. Un exemple parlant est celui des analyses médicales effectuées sur les mêmes échantillons par deux laboratoires différents.
Apprentissage de métriquesLa métrique, aussi appelée distance ou similarité, permet de mesurer le degré de parenté de deux éléments d'un même ensemble. Elle est utilisée dans le domaine de l'apprentissage dans des applications de classification ou de régression. La qualité de ces métriques est primordiale pour ces applications, d'où l'existence de méthodes d'apprentissage de distances. Ces méthodes se divisent en plusieurs catégories : supervisées ou non-supervisées selon les données mises à disposition.
Positionnement multidimensionnelLe positionnement multidimensionnel est un ensemble de techniques statistiques utilisées dans le domaine de la visualisation d'information pour explorer les similarités dans les données. Le positionnement multidimentionnel est un cas particulier d'analyse multivariée. Typiquement, un algorithme de positionnement multidimensionnel part d'une matrice de similarité entre tous les points pour affecter à chaque point une position dans un espace à dimensions. Pour = 2 ou = 3, les positions peuvent être visualisées sur un plan ou dans un volume par un nuage de points.
Sequential pattern miningSequential pattern mining is a topic of data mining concerned with finding statistically relevant patterns between data examples where the values are delivered in a sequence. It is usually presumed that the values are discrete, and thus time series mining is closely related, but usually considered a different activity. Sequential pattern mining is a special case of structured data mining. There are several key traditional computational problems addressed within this field.
Kernel principal component analysisIn the field of multivariate statistics, kernel principal component analysis (kernel PCA) is an extension of principal component analysis (PCA) using techniques of kernel methods. Using a kernel, the originally linear operations of PCA are performed in a reproducing kernel Hilbert space. Recall that conventional PCA operates on zero-centered data; that is, where is one of the multivariate observations.
Learning vector quantizationIn computer science, learning vector quantization (LVQ) is a prototype-based supervised classification algorithm. LVQ is the supervised counterpart of vector quantization systems. LVQ can be understood as a special case of an artificial neural network, more precisely, it applies a winner-take-all Hebbian learning-based approach. It is a precursor to self-organizing maps (SOM) and related to neural gas, and to the k-nearest neighbor algorithm (k-NN). LVQ was invented by Teuvo Kohonen.
Locality sensitive hashingLocality sensitive hashing (LSH) est une méthode de recherche approximative dans des espaces de grande dimension. C'est une solution au problème de la malédiction de la dimension qui apparait lors d'une recherche des plus proches voisins en grande dimension. L'idée principale est d'utiliser une famille de fonction de hachage choisies telles que des points proches dans l'espace d'origine aient une forte probabilité d'avoir la même valeur de hachage. La méthode a de nombreuses applications en vision artificielle, traitement automatique de la langue, bio-informatique.