Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit l'analyse de corrélation canonique pour trouver des caractéristiques communes dans des ensembles de données séparés, s'étendant aux données multimodales et aux caractéristiques non linéaires.
Explore le cluster spectral, la décomposition des valeurs propres, les matrices laplaciennes et l'identification des clusters au moyen de projections de vecteurs propres.
Explore les techniques de regroupement de comportement et de réduction de dimensionnalité non supervisées, couvrant des algorithmes comme K-Means, DBSCAN et Gaussian Mixture Model.
Explore les modèles de facteurs fonctionnels à haute dimension pour prévoir les courbes de mortalité au Japon, en discutant de l'estimation, de la cohérence et de l'application.
Introduit la classification des documents en utilisant des fonctionnalités telles que les mots et les métadonnées, et des modèles tels que k-Nearest-Neighbors et word embeddings.