thumb|Exemple d'arbre de défaillances.
Un arbre de défaillances ou ADD (aussi appelé arbre de pannes ou arbre de fautes) est une technique d’ingénierie très utilisée dans les études de sécurité et de fiabilité des systèmes statiques (un système statique est un système dont la défaillance ne dépend pas de l'ordre de défaillance de ses composants), ainsi que dans l'analyse de cause racine (ACR). Cette méthode consiste à représenter graphiquement les combinaisons possibles d’événements qui permettent la réalisation d’un événement indésirable prédéfini. Une telle représentation graphique met donc en évidence les relations de cause à effet. Cette technique est complétée par un traitement mathématique qui permet la combinaison de défaillances simples ainsi que de leur probabilité d'apparition. Elle permet ainsi de quantifier la probabilité d'occurrence d'un événement indésirable, également appelé « événement redouté ».
L'arbre de défaillances (Fault Tree ou « FT » en anglais) est un outil graphique très utilisé dans les études de sécurité et de fiabilité des systèmes. Cet outil, aussi appelé « arbre de pannes » ou « arbre de fautes », permet de représenter graphiquement les combinaisons possibles d’événements qui permettent la réalisation d’un événement indésirable prédéfini. L’arbre de défaillances est ainsi formé de niveaux successifs d’événements qui s’articulent par l’intermédiaire de portes (initialement logiques). En adoptant cette représentation et la logique déductive (allant des effets vers les causes) et booléenne qui lui est propre, il est possible de remonter d’effets en causes de l’événement indésirable à des événements de base, indépendants entre eux et probabilisables .
Lorsqu’il s’agit d’étudier les défaillances d’un système, l’arbre de défaillances s’appuie sur une analyse dysfonctionnelle d’un système à réaliser préalablement : une analyse des modes de défaillance et de leurs effets (AMDE, ou complétée par la criticité, AMDEC).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The system safety concept calls for a risk management strategy based on identification, analysis of hazards and application of remedial controls using a systems-based approach. This is different from traditional safety strategies which rely on control of conditions and causes of an accident based either on the epidemiological analysis or as a result of investigation of individual past accidents. The concept of system safety is useful in demonstrating adequacy of technologies when difficulties are faced with probabilistic risk analysis.
vignette| Alimentation redondante En ingénierie, la redondance est la duplication de composants ou de fonctions critiques d'un système dans le but d'augmenter la fiabilité du système, généralement sous la forme d'une sauvegarde ou d'une sécurité intégrée, ou pour améliorer les performances réelles du système, comme dans le cas de récepteurs GNSS ou traitement informatique multithread.
L'analyse de cause racine (ACR ; ) est une démarche de résolution de problème partant du constat qu'il est plus judicieux de traiter les causes d'un problème que d'en traiter les symptômes immédiats. En effet, l'analyse des causes d'un problème permet d'en déterminer une solution définitive, et donc, empêcher qu'il ne se reproduise de nouveau. L’ACR est un processus itératif d'amélioration continue. Résolution de problème QQOQCCP Diagramme d'Ishikawa Arbre des causes Arbre de défaillances Cinq pourquoi Diag
This course is an introduction to the alignment of enterprise needs with the possibilities offered by Information Technology (IT). Using a simulated business case, we explore how to define the require
This advanced graduate course teaches the key design principles underlying successful computer and communication systems, and shows how to solve real problems with ideas, techniques, and algorithms fr
The course presents and analyses the different systems, architectures and components of spacecraft avionics (on board data handling and processing systems) controlling and commanding spacecraft and pa
Explore les méthodes de diagnostic des risques comme l'analyse « What-If », l'analyse des arbres de failles et l'analyse des arbres d'événements afin d'identifier et d'atténuer les risques potentiels.
Explore la redondance en tant que technique clé pour améliorer la fiabilité du système grâce à la tolérance aux pannes et à la haute disponibilité.
La psychologie de l'éducation est, selon l'APA (American Psychological Association), la discipline qui s'intéresse au développement, à l'évaluation et à l'application : des théories de l'apprentissage et de l'enseignement ; du matériel éducatif, des programmes, des stratégies et des techniques issues de la théorie contribuant aux activités et aux processus éducatifs impliqués tout au long de la vie ; des programmes d'intervention de rééducation et correctifs auprès de différents publics.
L'ingénierie de fiabilité est un domaine de l'ingénierie, qui traite de l'étude, de l'évaluation et du Product Lifecycle Management de la fiabilité : l'habilité d'un système ou d'un composant à remplir ses fonctions exigées dans des conditions déterminées pour une période de temps déterminé. L'ingénierie de fiabilité est une sous-discipline au sein de l'ingénierie des systèmes. La fiabilité est souvent mesurée en probabilité de défaillance, fréquence de défaillance, ou en termes de disponibilité, une probabilité dérivée de la fiabilité et de la maintenabilité.
Safety engineering is an engineering discipline which assures that engineered systems provide acceptable levels of safety. It is strongly related to industrial engineering/systems engineering, and the subset system safety engineering. Safety engineering assures that a life-critical system behaves as needed, even when components fail. Analysis techniques can be split into two categories: qualitative and quantitative methods. Both approaches share the goal of finding causal dependencies between a hazard on system level and failures of individual components.