Théorème isopérimétriqueEn mathématiques, et plus précisément en géométrie, un théorème isopérimétrique est une généralisation des résultats plus élémentaires d'isopérimétrie montrant par exemple que le disque est, à périmètre donné, la figure ayant la plus grande aire. Les questions traitées par cette généralisation concernent les compacts d'un espace métrique muni d'une mesure. Un exemple simple est donné par les compacts d'un plan euclidien. Les compacts concernés sont ceux de mesures finies ayant une frontière aussi de mesure finie.
Solide de révolutionEn géométrie, un solide de révolution est engendré par une surface plane fermée tournant autour d'un axe situé dans le même plan qu'elle et ne possédant en commun avec elle aucun point ou seulement des points de sa frontière. Parmi les solides de révolution, on peut citer : la boule ; le cylindre circulaire droit ; le cône circulaire droit ; le tore ; l'ellipsoïde (de révolution). Tout plan contenant l'axe de rotation découpe sur la surface de révolution un méridien.
Surface de révolutionEn mathématiques, une surface de révolution est une surface de R, invariante par rotation autour d'un axe fixe. Une surface balayée par la rotation d'une courbe quelconque autour d'un axe fixe est une surface de révolution. Son intersection avec un plan contenant l'axe s'appelle une méridienne. Son intersection avec un plan perpendiculaire à l'axe est formée de cercles appelés parallèles. Les surfaces de révolution comprennent les sphères, les tores, cylindre de révolution, ellipsoïde de révolution et hyperboloïdes de révolution, les ovoïdes, etc.
PyramideEn géométrie, une pyramide (du grec ancien ) à n côtés est un polyèdre à n + 1 faces, formé en reliant une base polygonale de n côtés à son sommet ou sommet opposé à la base (également appelé apex), par n faces triangulaires (n ≥ 3). Lorsque cela n'est pas précisé, la base est supposée carrée. Pour une pyramide triangulaire chaque face peut servir de base, avec le sommet opposé pour apex. Le tétraèdre régulier, un des solides de Platon, est une pyramide triangulaire.
Polygone régulierEn géométrie euclidienne, un polygone régulier est un polygone à la fois équilatéral (tous ses côtés ont la même longueur) et équiangle (tous ses angles ont la même mesure). Un polygone régulier est soit convexe, soit étoilé. Tous les polygones réguliers convexes d'un même nombre de côtés sont semblables. Tout polygone régulier étoilé de n côtés a une enveloppe convexe de n côtés, qui est un polygone régulier. Un entier n supérieur ou égal à 3 étant donné, il existe un polygone régulier convexe de n côtés.
Medial triangleIn Euclidean geometry, the medial triangle or midpoint triangle of a triangle △ABC is the triangle with vertices at the midpoints of the triangle's sides AB, AC, BC. It is the n = 3 case of the midpoint polygon of a polygon with n sides. The medial triangle is not the same thing as the median triangle, which is the triangle whose sides have the same lengths as the medians of △ABC. Each side of the medial triangle is called a midsegment (or midline). In general, a midsegment of a triangle is a line segment which joins the midpoints of two sides of the triangle.
Axiome des parallèlesL’axiome d'Euclide, dit également cinquième postulat d’Euclide, est dû au savant grec Euclide (). C'est un axiome relatif à la géométrie du plan. La nécessité de cet axiome a constitué la question la plus lancinante de toute l'histoire de la géométrie, et il a fallu plus de deux millénaires de débats ininterrompus pour que la communauté scientifique reconnaisse l'impossibilité de le réduire au statut de simple théorème. vignette|Illustration de l'axiome d'Euclide : La droite S détermine les angles internes α et β avec les droites g et h.
Parametric surfaceA parametric surface is a surface in the Euclidean space which is defined by a parametric equation with two parameters . Parametric representation is a very general way to specify a surface, as well as implicit representation. Surfaces that occur in two of the main theorems of vector calculus, Stokes' theorem and the divergence theorem, are frequently given in a parametric form. The curvature and arc length of curves on the surface, surface area, differential geometric invariants such as the first and second fundamental forms, Gaussian, mean, and principal curvatures can all be computed from a given parametrization.
Corresponding sides and corresponding anglesIn geometry, the tests for congruence and similarity involve comparing corresponding sides and corresponding angles of polygons. In these tests, each side and each angle in one polygon is paired with a side or angle in the second polygon, taking care to preserve the order of adjacency. For example, if one polygon has sequential sides a, b, c, d, and e and the other has sequential sides v, w, x, y, and z, and if b and w are corresponding sides, then side a (adjacent to b) must correspond to either v or x (both adjacent to w).
Holomorphic curveIn mathematics, in the field of complex geometry, a holomorphic curve in a complex manifold M is a non-constant holomorphic map f from the complex plane to M. Nevanlinna theory addresses the question of the distribution of values of a holomorphic curve in the complex projective line.