Représentation unitaireEn mathématiques, une représentation unitaire d'un groupe G est une représentation linéaire π de G sur un espace de Hilbert complexe V telle que π(g) est un opérateur unitaire pour tout g ∈ G. La théorie générale est bien développée dans le cas où G est un groupe topologique localement compact (séparé) et les représentations sont fortement continues. La théorie a été largement appliquée en mécanique quantique depuis les années 1920, particulièrement sous l'influence par le livre de 1928 de Hermann Weyl, Gruppentheorie und Quantenmechanik.
Mesure complexeEn mathématiques et plus particulièrement en théorie de la mesure, une mesure complexe, ou mesure à valeurs complexes, est une extension de la notion de mesure signée finie dans le sens où les valeurs complexes sont autorisées, ce qui n'est pas le cas d'une mesure signée finie qui est, par définition, à valeurs réelles. De manière équivalente, une mesure complexe est une fonction qui peut s'écrire sous la forme où et sont des mesures signées finies, appelées respectivement, partie réelle et partie imaginaire de .
Escalier de CantorL'escalier de Cantor, ou l'escalier du diable, est le graphe d'une fonction f continue croissante sur [0, 1], telle que f(0) = 0 et f(1) = 1, qui est dérivable presque partout, la dérivée étant presque partout nulle. Il s'agit cependant d'une fonction continue, mais pas absolument continue. Soit f une fonction continue sur un intervalle I ⊂ R, de dérivée math|f '''. Si f ' est nulle sur I, alors f est constante. C'est une conséquence immédiate du théorème des accroissements finis.
Intégrale de Stieltjesvignette|droite|Thomas Stieltjes (1856-1894). L'intégrale de Stieltjes constitue une généralisation de l'intégrale ordinaire, ou intégrale de Riemann. En effet, considérons deux fonctions réelles bornées f et g définies sur un intervalle fermé [a, b], ainsi qu'une subdivision a = x < x < x < ... < x = b de cet intervalle. Si la somme de Riemann avec ξi ∈ [x, x], tend vers une limite S lorsque le pas max(x – x) tend vers 0, alors S est appelée l'intégrale de Stieltjes (ou parfois l'intégrale de Riemann-Stieltjes) de la fonction f par rapport à g.
Fonction à variation bornéeEn analyse, une fonction est dite à variation bornée quand elle vérifie une certaine condition de régularité. Cette condition a été introduite en 1881 par le mathématicien Camille Jordan pour étendre le théorème de Dirichlet sur la convergence des séries de Fourier. Soit f une fonction définie sur un ensemble totalement ordonné T et à valeurs dans un espace métrique (E, d). Pour toute subdivision σ = (x, x, ...
Mesure de JordanEn mathématiques, la mesure de Peano-Jordan est une extension de la notion de taille (longueur, aire, volume), aisément définie pour des domaines simples tels que le rectangle ou le parallélépipède, à des formes plus compliquées. La mesure de Jordan s'avère trop restrictive pour certains ensembles qu'on pourrait souhaiter être mesurables. Pour cette raison, il est maintenant plus fréquent de travailler avec la mesure de Lebesgue, qui est une extension de la mesure de Jordan à une plus grande classe d'ensembles.
Théorème de Radon-Nikodym-LebesgueLe théorème de Radon-Nikodym-Lebesgue est un théorème d'analyse, une branche des mathématiques qui est constituée du calcul différentiel et intégral et des domaines associés. Le théorème de Radon-Nikodym-Lebesgue est un résultat de théorie de la mesure, cependant une démonstration faisant intervenir les espaces de Hilbert a été donnée par le mathématicien John von Neumann au début du .
Mesure régulièreEn théorie de la mesure, une mesure régulière est une mesure sur un espace topologique séparé mesuré qui vérifie deux propriétés qui lient mesure et topologie. Quelques énoncés qui posent des conditions topologiques assez couramment remplies permettent de garantir la régularité d'une mesure de Borel. Une mesure (positive) définie sur une tribu contenant la tribu borélienne d'un espace séparé X est dite régulière lorsqu'elle est à la fois intérieurement régulière et extérieurement régulière, c'est-à-dire lorsque : pour tout élément de la tribu, ; pour tout élément de la tribu, .
Τ-additivityIn mathematics, in the field of measure theory, τ-additivity is a certain property of measures on topological spaces.
Camille Jordan (mathématicien)Marie Ennemond Camille Jordan, né le à Lyon et mort le à Paris, est un mathématicien français, connu à la fois pour son travail fondamental dans la théorie des groupes et pour son influent Cours d'analyse. Son père Esprit-Alexandre Jordan (1800-1888), polytechnicien (1818), fut député de Saône-et-Loire (1871-1876) et sa mère Joséphine était la sœur du peintre Pierre Puvis de Chavannes. Il étudia à l'École polytechnique (Promotion 1855).