La théorie des modèles est une branche de la logique mathématique qui traite de la construction et de la classification des structures. Elle définit en particulier les modèles des théories axiomatiques, l'objectif étant d'interpréter les structures syntaxiques (termes, formules, démonstrations...) dans des structures mathématiques (ensemble des entiers naturels, groupes, univers...) de façon à leur associer des concepts de nature sémantique (comme le sens ou la vérité).
L'idée d'interprétation de théories mathématiques dans des structures apparaît assez tôt, dès le . Ainsi l'abbé Buée et Jean-Robert Argand, puis Gauss et Cauchy donnent un modèle géométrique dans lequel les nombres complexes, objets certes commodes pour les calculs mais à l'époque sans signification, sont interprétés comme des points du plan euclidien (le plan complexe est parfois nommé plan d'Argand) et leurs opérations comme des transformations géométriques. Mais c'est sans doute l'apparition des géométries non euclidiennes qui fut la plus déterminante dans l'émergence de l'idée de modèle. D'abord fondées sur des variantes du postulat des parallèles d'Euclide, elles apparaissaient comme un simple jeu formel et n'avaient que peu de crédit face au statut de vérité absolue de la géométrie euclidienne. Elles ont peu à peu été acceptées à partir du moment où l'on a pu en donner des modèles, c'est-à-dire des supports géométriques avec des interprétations spécifiques pour les concepts formels de points, de droites, etc. Les modèles ont permis d’interpréter la géométrie non euclidienne dans la géométrie euclidienne. Ainsi Poincaré donne un modèle du plan hyperbolique à partir d'un demi-plan du plan complexe. Plus tard, Hilbert fera une conférence à Paris où il donnera une signification numérique à tous les termes de la géométrie euclidienne dans le but de démontrer l’indépendance des axiomes de la géométrie euclidienne vis-à-vis des autres axiomes.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En logique mathématique, et particulièrement en théorie des ensembles et en théorie des modèles, la méthode du va-et-vient est une méthode pour démontrer l'isomorphisme entre des structures dénombrables vérifiant certaines conditions additionnelles. La méthode du va-et-vient s'applique à des ensembles dénombrables infinis ayant une certaine structure (au sens logique du terme). Elle permet de construire une bijection entre ces ensembles, bijection qui possède des propriétés de préservation de la structure, donc qui est un isomorphisme.
In model theory, a branch of mathematical logic, and in algebra, the reduced product is a construction that generalizes both direct product and ultraproduct. Let {Si | i ∈ I} be a family of structures of the same signature σ indexed by a set I, and let U be a filter on I. The domain of the reduced product is the quotient of the Cartesian product by a certain equivalence relation ~: two elements (ai) and (bi) of the Cartesian product are equivalent if If U only contains I as an element, the equivalence relation is trivial, and the reduced product is just the original Cartesian product.