Molecular diffusion, often simply called diffusion, is the thermal motion of all (liquid or gas) particles at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid and the size (mass) of the particles. Diffusion explains the net flux of molecules from a region of higher concentration to one of lower concentration. Once the concentrations are equal the molecules continue to move, but since there is no concentration gradient the process of molecular diffusion has ceased and is instead governed by the process of self-diffusion, originating from the random motion of the molecules. The result of diffusion is a gradual mixing of material such that the distribution of molecules is uniform. Since the molecules are still in motion, but an equilibrium has been established, the result of molecular diffusion is called a "dynamic equilibrium". In a phase with uniform temperature, absent external net forces acting on the particles, the diffusion process will eventually result in complete mixing.
Consider two systems; S1 and S2 at the same temperature and capable of exchanging particles. If there is a change in the potential energy of a system; for example μ1>μ2 (μ is Chemical potential) an energy flow will occur from S1 to S2, because nature always prefers low energy and maximum entropy.
Molecular diffusion is typically described mathematically using Fick's laws of diffusion.
Diffusion is of fundamental importance in many disciplines of physics, chemistry, and biology. Some example applications of diffusion:
Sintering to produce solid materials (powder metallurgy, production of ceramics)
Chemical reactor design
Catalyst design in chemical industry
Steel can be diffused (e.g., with carbon or nitrogen) to modify its properties
Doping during production of semiconductors.
Diffusion is part of the transport phenomena. Of mass transport mechanisms, molecular diffusion is known as a slower one.
In cell biology, diffusion is a main form of transport for necessary materials such as amino acids within cells.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours porte sur le transfert de la chaleur par conduction, convection et rayonnement, ainsi que sur la diffusion à l'état solide. D'après les règles phénoménologiques (Equations de Fourrier et Fick
The concept of Shell balances, the Navier-Stokes equations and generalized differential balances equations for heat and mass transport are given. These relations are applied to model systems. Integral
In chemical physics, atomic diffusion is a diffusion process whereby the random, thermally-activated movement of atoms in a solid results in the net transport of atoms. For example, helium atoms inside a balloon can diffuse through the wall of the balloon and escape, resulting in the balloon slowly deflating. Other air molecules (e.g. oxygen, nitrogen) have lower mobilities and thus diffuse more slowly through the balloon wall.
The Nernst–Planck equation is a conservation of mass equation used to describe the motion of a charged chemical species in a fluid medium. It extends Fick's law of diffusion for the case where the diffusing particles are also moved with respect to the fluid by electrostatic forces. It is named after Walther Nernst and Max Planck. The Nernst–Planck equation is a continuity equation for the time-dependent concentration of a chemical species: where is the flux.
Un coefficient de diffusion est une grandeur caractéristique du phénomène de diffusion de la matière. Le coefficient de diffusion mesure le rapport entre le flux molaire dû à la diffusion moléculaire, et le gradient de concentration de l'espèce chimique considérée (ou, plus généralement, de la variable d'effort entraînant cette diffusion), comme formulé par la loi de Fick.
Explore la diffusion dans les alliages, en mettant l'accent sur les métaux généraux et les solutés, y compris les corrélations empiriques et les mécanismes de diffusion du soluté.
Couvre le concept fondamental de diffusion dans les matériaux, mettant l'accent sur le mouvement atomique et son impact sur les propriétés et l'évolution des matériaux.
La mécanique des fluides est un domaine de la physique consacré à l’étude du comportement des fluides (liquides, gaz et plasmas) et des forces internes associées. C’est une branche de la mécanique des milieux continus qui modélise la matière à l’aide de particules assez petites pour relever de l’analyse mathématique, mais assez grandes par rapport aux molécules pour être décrites par des fonctions continues. Elle comprend deux sous-domaines : la statique des fluides, qui est l’étude des fluides au repos, et la dynamique des fluides, qui est l’étude des fluides en mouvement.
La relativité générale est une théorie relativiste de la gravitation, c'est-à-dire qu'elle décrit l'influence de la présence de matière, et plus généralement d'énergie, sur le mouvement des astres en tenant compte des principes de la relativité restreinte. La relativité générale englobe et supplante la théorie de la gravitation universelle d'Isaac Newton qui en représente la limite aux petites vitesses (comparées à la vitesse de la lumière) et aux champs gravitationnels faibles.
La thermodynamique est la branche de la physique qui traite de la dépendance des propriétés physiques des corps à la température, des phénomènes où interviennent des échanges thermiques, et des transformations de l'énergie entre différentes formes. La thermodynamique peut être abordée selon deux approches différentes et complémentaires : phénoménologique et statistique. La thermodynamique phénoménologique ou classique a été l'objet de nombreuses avancées dès le .
Surplombant la ville et la baie, pointant vers le Vieux-Port, deux lames de béton définissent une position, un lieu construit dans le massif torturé qui entoure l'Estaque. Ces lames constituent à la fois les vestiges de la cimenterie La Coloniale, mais aus ...
2018
, ,
Oxygen diffusion plays an important role in grain growth and densification during the sintering of alumina ceramics and governs high-temperature processes such as creep. The atomistic mechanism for oxygen diffusion in alumina is, however, still debated; at ...
Wiley-Blackwell2014
,
Gas diffusion electrodes (GDEs) help to reduce transport limitations in devices for electrochemical CO2 reduction. Homogenized modeling of such devices requires input of morphological characteristics and effective transport properties of the porous structu ...