Molecular diffusion, often simply called diffusion, is the thermal motion of all (liquid or gas) particles at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid and the size (mass) of the particles. Diffusion explains the net flux of molecules from a region of higher concentration to one of lower concentration. Once the concentrations are equal the molecules continue to move, but since there is no concentration gradient the process of molecular diffusion has ceased and is instead governed by the process of self-diffusion, originating from the random motion of the molecules. The result of diffusion is a gradual mixing of material such that the distribution of molecules is uniform. Since the molecules are still in motion, but an equilibrium has been established, the result of molecular diffusion is called a "dynamic equilibrium". In a phase with uniform temperature, absent external net forces acting on the particles, the diffusion process will eventually result in complete mixing.
Consider two systems; S1 and S2 at the same temperature and capable of exchanging particles. If there is a change in the potential energy of a system; for example μ1>μ2 (μ is Chemical potential) an energy flow will occur from S1 to S2, because nature always prefers low energy and maximum entropy.
Molecular diffusion is typically described mathematically using Fick's laws of diffusion.
Diffusion is of fundamental importance in many disciplines of physics, chemistry, and biology. Some example applications of diffusion:
Sintering to produce solid materials (powder metallurgy, production of ceramics)
Chemical reactor design
Catalyst design in chemical industry
Steel can be diffused (e.g., with carbon or nitrogen) to modify its properties
Doping during production of semiconductors.
Diffusion is part of the transport phenomena. Of mass transport mechanisms, molecular diffusion is known as a slower one.
In cell biology, diffusion is a main form of transport for necessary materials such as amino acids within cells.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In chemical physics, atomic diffusion is a diffusion process whereby the random, thermally-activated movement of atoms in a solid results in the net transport of atoms. For example, helium atoms inside a balloon can diffuse through the wall of the balloon and escape, resulting in the balloon slowly deflating. Other air molecules (e.g. oxygen, nitrogen) have lower mobilities and thus diffuse more slowly through the balloon wall.
The Nernst–Planck equation is a conservation of mass equation used to describe the motion of a charged chemical species in a fluid medium. It extends Fick's law of diffusion for the case where the diffusing particles are also moved with respect to the fluid by electrostatic forces. It is named after Walther Nernst and Max Planck. The Nernst–Planck equation is a continuity equation for the time-dependent concentration of a chemical species: where is the flux.
Diffusivity, mass diffusivity or diffusion coefficient is usually written as the proportionality constant between the molar flux due to molecular diffusion and the negative value of the gradient in the concentration of the species. More accurately, the diffusion coefficient times the local concentration is the proportionality constant between the negative value of the mole fraction gradient and the molar flux. This distinction is especially significant in gaseous systems with strong temperature gradients.
Ce cours porte sur le transfert de la chaleur par conduction, convection et rayonnement, ainsi que sur la diffusion à l'état solide. D'après les règles phénoménologiques (Equations de Fourrier et Fick
The concept of Shell balances, the Navier-Stokes equations and generalized differential balances equations for heat and mass transport are given. These relations are applied to model systems. Integral
Gas diffusion electrodes (GDEs) help to reduce transport limitations in devices for electrochemical CO2 reduction. Homogenized modeling of such devices requires input of morphological characteristics and effective transport properties of the porous structu ...
2023
Surplombant la ville et la baie, pointant vers le Vieux-Port, deux lames de béton définissent une position, un lieu construit dans le massif torturé qui entoure l'Estaque. Ces lames constituent à la fois les vestiges de la cimenterie La Coloniale, mais aus ...
2018
, ,
Oxygen diffusion plays an important role in grain growth and densification during the sintering of alumina ceramics and governs high-temperature processes such as creep. The atomistic mechanism for oxygen diffusion in alumina is, however, still debated; at ...
Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical, and biomedical engineering, as well as geophysics, oceanography, meteorology, astrophysics, and biology. It can be divided into fluid statics, the study of fluids at rest; and fluid dynamics, the study of the effect of forces on fluid motion.
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime.
Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of thermodynamics which convey a quantitative description using measurable macroscopic physical quantities, but may be explained in terms of microscopic constituents by statistical mechanics.