Présente des modèles de langage classiques, leurs applications et des concepts fondamentaux tels que la modélisation et les mesures d'évaluation basées sur le nombre.
Couvre la recherche de documents, la classification, l'analyse des sentiments et la détection de sujets à l'aide de matrices TF-IDF et de vecteurs de mots contextualisés.
Couvre la récupération d'informations probabilistes, la pertinence de la modélisation en tant que probabilité, l'expansion des requêtes et la génération automatique de thésaurus.
Explore les méthodes d'extraction de l'information, y compris les approches traditionnelles et fondées sur l'intégration, l'apprentissage supervisé, la surveillance à distance et l'induction taxonomique.
Explore l'indexation sémantique latente, la construction de vocabulaire, la création de matrices de documents, la transformation de requêtes et la récupération de documents en utilisant la similarité cosinus.
Explore les algorithmes et les techniques d'extraction de l'information, y compris l'algorithme Viterbi, la reconnaissance des entités nommées, et la surveillance lointaine.
Présente les bases de la récupération d'informations, couvrant la récupération basée sur le texte, les caractéristiques du document, les fonctions de similarité et la différence entre la récupération booléenne et la récupération classée.