Fixation du carbone en C3upright=.75|vignette|3-phosphoglycérate. La fixation du carbone en est une voie métabolique de fixation du carbone parmi les trois voies de la photosynthèse, les deux autres étant la fixation du carbone en et le métabolisme acide crassulacéen (CAM). On l'appelle ainsi en référence au , molécule à trois atomes de carbone formée par condensation du dioxyde de carbone sur du ribulose-1,5-bisphosphate par l'enzyme Rubisco : {| align="left" | 220px | + + → 2 | 180px |- align="center" valign="middle" | D-ribulose-1,5-bisphosphate | | 3-phospho-D-glycérate |- align="center" valign="middle" | colspan="3" bgcolor="ffffd0" | Ribulose-1,5-bisphosphate carboxylase/oxygénase (Rubisco) – |} Cette réaction a lieu dans toutes les plantes comme première étape du cycle de Calvin.
Fixation du carbone en C4upright=.75|vignette|L-malate,acide dicarboxylique . upright=.75|vignette|L-aspartate,acide dicarboxylique. La fixation du carbone en est l'un des trois modes de fixation du carbone des êtres vivants, parallèlement à la fixation du carbone en C3 et au métabolisme acide crassulacéen (CAM). On l'appelle ainsi en référence à l'oxaloacétate, molécule comportant quatre atomes de carbone formée dès la première étape du processus chez un petit groupe de plantes souvent désignées collectivement comme « plantes en ».
Photorespirationvignette| Représentation simplifiée de la photorespiration et du cycle de Calvin. vignette| Schéma de la photorespiration à travers les organites impliqués. La photorespiration est l'ensemble des réactions mises en œuvre par les organismes photosynthétiques à la suite de l'activité oxygénase de la Rubisco. En effet, cette enzyme intervient le plus souvent à travers son activité carboxylase, par laquelle une molécule de dioxyde de carbone est fixée sur du ribulose-1,5-bisphosphate pour donner deux molécules de 3-phosphoglycérate qui sont métabolisées par le cycle de Calvin.
Métabolisme acide crassulacéenvignette|upright=1.4|La nuit : fixation de en oxaloacétate (OA) grâce à la PEP carboxylase (PEPc) ; OA est réduit en malate (M) puis stocké sous forme d' acide malique (AM). Le jour : reconversion d'AM en M, utilisé dans le cycle de Calvin (CC). Le métabolisme acide crassulacéen (CAM, pour crassulacean acid metabolism) est un type de photosynthèse qui permet à certaines plantes terrestres chlorophylliennes de fixer le carbone.
Bactérie pourpreUne bactérie pourpre est une protéobactérie phototrophe, c'est-à-dire capable de produire son énergie métabolique par photosynthèse. Ces bactéries sont pigmentées par de la bactériochlorophylle a et b avec divers caroténoïdes qui leur donnent des couleurs allant de l'orange au pourpre en passant par le brun et le rouge. On peut les diviser en deux groupes : les bactéries pourpres sulfureuses et les bactéries pourpres non sulfureuses (Rhodospirillaceae).
Ribulose-1,5-bisphosphateLe ribulose-1,5-bisphosphate (RuBP), encore appelé ribulose-1,5-diphosphate, est un métabolite du cycle de Calvin, produit pendant la phase obscure de la photosynthèse. C'est sur le RuBP que se fixe une molécule de dioxyde de carbone sous l'effet de la Rubisco, l'enzyme clé de la fixation du carbone atmosphérique : le se fixe sur une molécule à cinq atomes de carbone pour former deux molécules organiques à trois atomes de carbone chacune, ce qui représente un gain net d'un atome de carbone organique au cours de cette réaction, à la base de la croissance des organismes photosynthétiques.
PhotosystèmeUn photosystème est un ensemble formé par des protéines et des pigments - dont la chlorophylle - et se trouve dans les membranes thylakoïdales des cyanobactéries et des chloroplastes dans les cellules végétales. Les photosystèmes interviennent dans les mécanismes de la photosynthèse en absorbant les photons de la lumière. upright=1.67|vignette|Schéma d'un photosystème. 1 : Photon lumineux incident. 2 : Molécules de pigments constituants l'antenne collectrice. 3 : Centre réactionnel contenant un dimère de chlorophylle a.
Bactérie pourpre sulfureuseLes bactéries pourpres sulfureuses (aussi appelée bactéries phototrophes sulfo-oxydantes et officiellement Chromatiales) font partie de la famille des bactéries photosynthétiques avec les bactéries vertes sulfureuses et les cyanobactéries. Cependant, contrairement aux cyanobactéries, les bactéries pourpres sulfureuses comme les bactéries vertes sulfureuses ne produisent pas d’oxygène lors de la photosynthèse. Dans le cycle du soufre, ces bactéries oxydent le sulfure d'hydrogène (H2S) en soufre élémentaire (Sn).
CyanobacteriotaLes Cyanobacteriota sont des bactéries photosynthétiques. Longtemps appelées Cyanobacteria, ce nom n'a jamais été officiellement validé malgré son usage très courant. Le nom validé Cyanobacteriota a été officialisé début 2023 par l'ICN et l'ICSP (International Committee on Systematics of Prokaryotes). Plus communément appelées cyanobactéries, elles forment un phylum de bactéries qui contient la classe validée des Cyanophyceae et non-validée des Candidatus Melainabacteria (le mot Candidatus signifie que ces bactéries n'ont pas été cultivées en laboratoire).
Fixation du carboneLa fixation du carbone est un processus à l'œuvre chez les organismes dits autotrophes, qui convertissent le carbone inorganique — typiquement, le dioxyde de carbone — en composés organiques tels que des glucides. La photosynthèse en est l'exemple le plus emblématique, caractérisant les organismes dits photoautotrophes ; la chimiosynthèse est une autre forme de fixation du carbone susceptible d'avoir lieu même en l'absence de lumière — on parle alors de lithotrophie pour qualifier les organismes qui utilisent l'énergie des oxydations inorganiques pour produire leur matière vivante.