Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Distributed constraint optimization (DCOP) is a framework in which multiple agents with private constraints (or preferences) cooperate to achieve a common goal optimally. DCOPs are applicable in several multi-agent coordination/allocation problems, such as ...
Distributed learning is the key for enabling training of modern large-scale machine learning models, through parallelising the learning process. Collaborative learning is essential for learning from privacy-sensitive data that is distributed across various ...
Decentralized learning is appealing as it enables the scalable usage of large amounts of distributed data and resources (without resorting to any central entity), while promoting privacy since every user minimizes the direct exposure of their data. Yet, wi ...
Electric vehicles (EVs) are becoming more popular due to environmental consciousness. The limited availability of charging stations (CSs), compared to the number of EVs on the road, has led to increased range anxiety and a higher frequency of CS queries du ...
Mechanisms used in privacy-preserving machine learning often aim to guarantee differential privacy (DP) during model training. Practical DP-ensuring training methods use randomization when fitting model parameters to privacy-sensitive data (e.g., adding Ga ...
New York2023
, , ,
With the rise of open data, identifiability of individuals based on 3D renderings obtained from routine structural magnetic resonance imaging (MRI) scans of the head has become a growing privacy concern. To protect subject privacy, several algorithms have ...
Wiley2024
Predictive models based on machine learning (ML) offer a compelling promise: bringing clarity and structure to complex natural and social environments. However, the use of ML poses substantial risks related to the privacy of their training data as well as ...
EPFL2023
, , , ,
The advancement of face recognition technology has delivered substantial societal advantages. However, it has also raised global privacy concerns due to the ubiquitous collection and potential misuse of individuals' facial data. This presents a notable par ...
The transition towards a human-centered indoor climate is beneficial from occupants’ thermal comfort and from an energy reduction perspective. However, achieving this goal requires the knowledge of the thermal state of individuals at the level of body part ...
2023
With the pervasive digitalization of modern life, we benefit from efficient access to information and services. Yet, this digitalization poses severe privacy challenges, especially for special-needs individuals. Beyond being a fundamental human right, priv ...