Polarisation du spinLa polarisation du spin est une mesure du degré d'alignement du spin avec une direction donnée. Cette propriété peut se rapporter au spin de la conductivité électrique, donc aussi au moment magnétique, dans les métaux ferromagnétiques, tel le fer, ce qui peut créer un courant électrique dont le spin est polarisé. Il peut aussi se rapporter aux ondes de spin statiques. Elle peut se rapporter à un faisceau de particules produit artificiellement. La polarisation du spin des électrons ou des noyaux est aussi produite par l'application d'un champ magnétique.
Approximation de BornL'approximation de Born est une approximation faite en théorie de la diffusion, en particulier en mécanique quantique, pour des potentiels diffuseurs très peu denses. L'approximation de Born au premier ordre consiste à ne tenir compte que de l'onde incidente et des ondes diffusées par une seule interaction avec le potentiel dans la description de l'onde diffusée totale. Elle est nommée d'après Max Born. Il s'agit de la méthode de perturbations appliquée à la diffusion sur un corps étendu.
Observer (quantum physics)Some interpretations of quantum mechanics posit a central role for an observer of a quantum phenomenon. The quantum mechanical observer is tied to the issue of observer effect, where a measurement necessarily requires interacting with the physical object being measured, affecting its properties through the interaction. The term "observable" has gained a technical meaning, denoting a Hermitian operator that represents a measurement.
Matrices de PauliLes matrices de Pauli, développées par Wolfgang Pauli, forment, au facteur i près, une base de l'algèbre de Lie du groupe SU(2). Elles sont définies comme l'ensemble de matrices complexes de dimensions suivantes : (où i est l’unité imaginaire des nombres complexes). Ces matrices sont utilisées en mécanique quantique pour représenter le spin des particules, notamment dès 1927 dans l'étude non-relativiste du spin de l'électron : l'équation de Pauli.
Von Neumann entropyIn physics, the von Neumann entropy, named after John von Neumann, is an extension of the concept of Gibbs entropy from classical statistical mechanics to quantum statistical mechanics. For a quantum-mechanical system described by a density matrix ρ, the von Neumann entropy is where denotes the trace and ln denotes the (natural) matrix logarithm. If the density matrix ρ is written in a basis of its eigenvectors as then the von Neumann entropy is merely In this form, S can be seen as the information theoretic Shannon entropy.
Higher-dimensional gamma matricesIn mathematical physics, higher-dimensional gamma matrices generalize to arbitrary dimension the four-dimensional Gamma matrices of Dirac, which are a mainstay of relativistic quantum mechanics. They are utilized in relativistically invariant wave equations for fermions (such as spinors) in arbitrary space-time dimensions, notably in string theory and supergravity. The Weyl–Brauer matrices provide an explicit construction of higher-dimensional gamma matrices for Weyl spinors.
Théorème d'EhrenfestLe théorème d'Ehrenfest, du nom du physicien Paul Ehrenfest, relie la dérivée temporelle de la valeur moyenne d'un opérateur quantique au commutateur de cet opérateur avec le hamiltonien du système. Ce théorème concerne notamment tous les systèmes vérifiant le principe de correspondance. Le théorème d'Ehrenfest affirme que la dérivée temporelle de la valeur moyenne d’un opérateur (où l'opérateur qui renvoie la dérivée temporelle de l'observable concerné) est donnée par : où est un opérateur quantique quelconque et sa valeur moyenne.
Quantum dynamicsIn physics, quantum dynamics is the quantum version of classical dynamics. Quantum dynamics deals with the motions, and energy and momentum exchanges of systems whose behavior is governed by the laws of quantum mechanics. Quantum dynamics is relevant for burgeoning fields, such as quantum computing and atomic optics. In mathematics, quantum dynamics is the study of the mathematics behind quantum mechanics. Specifically, as a study of dynamics, this field investigates how quantum mechanical observables change over time.
BraneDans la théorie des cordes, une brane, ou p-brane, est un objet étendu, dynamique, possédant une énergie sous forme de tension sur son volume d'univers, qui est une charge source pour certaines interactions de la même façon qu'une particule chargée, telle l'électron par exemple, est une source pour l'interaction électromagnétique. Dans le langage des branes, une particule chargée est appelée une 0-brane (0 dimension spatiale et 1 dimension temporelle).
Energy operatorIn quantum mechanics, energy is defined in terms of the energy operator, acting on the wave function of the system as a consequence of time translation symmetry. It is given by: It acts on the wave function (the probability amplitude for different configurations of the system) The energy operator corresponds to the full energy of a system. The Schrödinger equation describes the space- and time-dependence of the slow changing (non-relativistic) wave function of a quantum system.