Les matrices de Pauli, développées par Wolfgang Pauli, forment, au facteur i près, une base de l'algèbre de Lie du groupe SU(2).
Elles sont définies comme l'ensemble de matrices complexes de dimensions suivantes :
(où i est l’unité imaginaire des nombres complexes).
Ces matrices sont utilisées en mécanique quantique pour représenter le spin des particules, notamment dès 1927 dans l'étude non-relativiste du spin de l'électron : l'équation de Pauli.
Ces identités impliquent la formule
Le déterminant et la trace des matrices de Pauli sont :
Par conséquent, les valeurs propres de chaque matrice sont ±1.
Chacune des trois matrices possède deux vecteurs propres :
Pour : et
Pour : et
Pour : et
Les matrices de Pauli obéissent aux relations de commutation et d'anticommutation suivantes :
où est le symbole de Levi-Civita, est le symbole de Kronecker et est la matrice identité. Les relations ci-haut peuvent être vérifiées en utilisant :
Ces relations de commutativité sont semblables à celles sur l'algèbre de Lie et, en effet, peut être interprétée comme l'algèbre de Lie de toutes les combinaisons linéaires de l'imaginaire fois les matrices de Pauli , autrement dit, comme les matrices anti-hermitiennes 2×2 avec trace de 0. Dans ce sens, les matrices de Pauli génèrent . Par conséquent, peut être vu comme les générateurs infinitésimaux du groupe de Lie correspondant SU(2) .
L'algèbre de est isomorphe à l'algèbre de Lie , laquelle correspond au groupe de Lie SO(3), le groupe des rotations en trois dimensions. En d'autres termes, les sont des réalisations de rotations « infinitésimales » dans un espace à trois dimensions (en fait, ce sont les réalisations de plus basse dimension).
Pour un vecteur de rotation en trois dimensions et le vecteur composé des matrices de Pauli, on a la relation suivante:
où est l'angle de rotation (la norme de ) et .
En mécanique quantique, les matrices de Pauli peuvent être remplacées par les matrices , définies par
et .
Leur commutateur est .
En choisissant comme base de les vecteurs , les matrices agissent comme et .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Le 'spin' () est, en physique quantique, une des propriétés internes des particules, au même titre que la masse ou la charge électrique. Comme d'autres observables quantiques, sa mesure donne des valeurs discrètes et est soumise au principe d'incertitude. C'est la seule observable quantique qui ne présente pas d'équivalent classique, contrairement, par exemple, à la position, l'impulsion ou l'énergie d'une particule. Il est toutefois souvent assimilé au moment cinétique (cf de cet article, ou Précession de Thomas).
vignette|Plaque commémorative de la naissance des quaternions sur le pont de Broom (Dublin). En mathématiques, un quaternion est un nombre dans un sens généralisé. Les quaternions englobent les nombres réels et complexes dans un système de nombres plus vastes où la multiplication n'est cette fois-ci plus une loi commutative. Les quaternions furent introduits par le mathématicien irlandais William Rowan Hamilton en 1843. Ils trouvent aujourd'hui des applications en mathématiques, en physique, en informatique et en sciences de l'ingénieur.
vignette|Le cube peut tourner continument sans que les ficelles qui le retiennent s'emmêlent. Après un mouvement de 360°, la configuration a changé. Mais au bout de 720° on revient à la position initiale. Un cube "détaché" se comporte comme un vecteur ordinaire, le cube attaché comme un spineur. Formellement, un spineur est un élément d'un espace de représentation pour le groupe spinoriel.
Explore la dérivée des longueurs de courbe, des déformations à extrémité fixe, des géodésiques, des typologies de points de surface et de la paramétrisation de sphère.
,
This article outlines the advancements made in broadening the application scope of the OpenMC neutron transport code to include thermohydraulic coupling and nuclear data uncertainty propagation. These developments primarily involve the incorporation of the ...
A key challenge across many disciplines is to extract meaningful information from data which is often obscured by noise. These datasets are typically represented as large matrices. Given the current trend of ever-increasing data volumes, with datasets grow ...
Given a family of nearly commuting symmetric matrices, we consider the task of computing an orthogonal matrix that nearly diagonalizes every matrix in the family. In this paper, we propose and analyze randomized joint diagonalization (RJD) for performing t ...