Ajustement de courbethumb|upright=2.2|Ajustement par itérations d'une courbe bruitée par un modèle de pic asymétrique (méthode de Gauss-Newton avec facteur d'amortissement variable). L'ajustement de courbe est une technique d'analyse d'une courbe expérimentale, consistant à construire une courbe à partir de fonctions mathématiques et d'ajuster les paramètres de ces fonctions pour se rapprocher de la courbe mesurée . On utilise souvent le terme anglais curve fitting, profile fitting ou simplement fitting, pour désigner cette méthode ; on utilise souvent le franglais « fitter une courbe » pour dire « ajuster une courbe ».
Quartet d'AnscombeLe quartet d'Anscombe est constitué de quatre ensembles de données qui ont les mêmes propriétés statistiques simples mais qui sont en réalité très différents, ce qui se voit facilement lorsqu'on les représente sous forme de graphiques. Ils ont été construits en 1973 par le statisticien Francis Anscombe dans le but de démontrer l'importance de tracer des graphiques avant d'analyser des données, car cela permet notamment d'estimer l'incidence des données aberrantes sur les différentes indices statistiques que l'on pourrait calculer.
Régression multivariée par spline adaptativeLa Régression multivariée par spline adaptative (en anglais MARS pour ) est une méthode statistique ; plus précisément, c'est une forme de modèle de régression présentée pour la première fois par Jerome H. Friedman et Bernard Silverman en 1991. C'est une technique de régression non paramétrique pouvant être vue comme une extension des régressions linéaires qui modélisent automatiquement des interactions et des non-linéarités. Le terme MARS est une marque de Salford Systems.
Régression non linéaireUne régression non linéaire consiste à ajuster un modèle, en général non linéaire, y = ƒa1, ..., am(x) pour un ensemble de valeurs (xi, yi)1 ≤ i ≤ n. Les variables xi et yi peuvent être des scalaires ou des vecteurs. Par « ajuster », il faut comprendre : déterminer les paramètres de la loi, (a1, ..., am), afin de minimiser S = ||ri||, avec : ri = yi - ƒa1, ..., am(xi). ||...|| est une norme. On utilise en général la norme euclidienne, ou norme l2 ; on parle alors de méthode des moindres carrés.
MulticollinearityIn statistics, multicollinearity (also collinearity) is a phenomenon in which one predictor variable in a multiple regression model can be linearly predicted from the others with a substantial degree of accuracy. In this situation, the coefficient estimates of the multiple regression may change erratically in response to small changes in the model or the data. Multicollinearity does not reduce the predictive power or reliability of the model as a whole, at least within the sample data set; it only affects calculations regarding individual predictors.
Donnée aberrantevignette|Ce graphique permet de visualiser la répartition de doyens selon leur âge de décès et l'âge de décès moyen des doyens de leur époque. Le record de longévité de Jeanne Calment constitue une anomalie statistique qui continue d'intriguer les gérontologues. En statistique, une donnée aberrante (anglais outlier) est une valeur ou une observation qui est « distante » des autres observations effectuées sur le même phénomène, c'est-à-dire qu'elle contraste grandement avec les valeurs « normalement » mesurées.
Discrete choiceIn economics, discrete choice models, or qualitative choice models, describe, explain, and predict choices between two or more discrete alternatives, such as entering or not entering the labor market, or choosing between modes of transport. Such choices contrast with standard consumption models in which the quantity of each good consumed is assumed to be a continuous variable. In the continuous case, calculus methods (e.g. first-order conditions) can be used to determine the optimum amount chosen, and demand can be modeled empirically using regression analysis.
ProbitIn probability theory and statistics, the probit function is the quantile function associated with the standard normal distribution. It has applications in data analysis and machine learning, in particular exploratory statistical graphics and specialized regression modeling of binary response variables. Mathematically, the probit is the inverse of the cumulative distribution function of the standard normal distribution, which is denoted as , so the probit is defined as Largely because of the central limit theorem, the standard normal distribution plays a fundamental role in probability theory and statistics.
OrthogonalitéEn géométrie classique, l'orthogonalité est une propriété liée à l'existence d'un angle droit (orthos = droit, gônia = angle). Dans l'espace, deux droites sont orthogonales si elles sont chacune parallèles à des droites se coupant en angle droit ; deux perpendiculaires étant deux droites orthogonales et sécantes. Une droite est orthogonale à un plan si elle est orthogonale aux droites du plan. On parle de vecteurs orthogonaux pour des vecteurs directeurs de droites orthogonales et de segments orthogonaux pour des segments portés par des droites orthogonales.
Segmented regressionSegmented regression, also known as piecewise regression or broken-stick regression, is a method in regression analysis in which the independent variable is partitioned into intervals and a separate line segment is fit to each interval. Segmented regression analysis can also be performed on multivariate data by partitioning the various independent variables. Segmented regression is useful when the independent variables, clustered into different groups, exhibit different relationships between the variables in these regions.