Axiomes de Peanovignette|Giuseppe Peano En mathématiques, les axiomes de Peano sont des axiomes pour l'arithmétique proposés initialement à la fin du par Giuseppe Peano, et qui connaissent aujourd'hui plusieurs présentations qui ne sont pas équivalentes, suivant la théorie sous-jacente, théorie des ensembles, logique du second ordre ou d'ordre supérieur, ou logique du premier ordre. Richard Dedekind avait proposé une formalisation assez proche, sous une forme non axiomatique.
Ordre lexicographiqueEn mathématiques, un ordre lexicographique est un ordre que l'on définit sur les suites finies d'éléments d'un ensemble ordonné (ou, de façon équivalente, les mots construits sur un ensemble ordonné). Sa définition est une généralisation de l'ordre du dictionnaire : l'ensemble ordonné est l'alphabet, les mots sont bien des suites finies de lettres de l'alphabet. La principale propriété de l'ordre lexicographique est de conserver la totalité de l'ordre initial.
ForcingEn mathématiques, et plus précisément en logique mathématique, le forcing est une technique inventée par Paul Cohen pour prouver des résultats de cohérence et d'indépendance en théorie des ensembles. Elle a été utilisée pour la première fois en 1962 pour prouver l'indépendance de l'hypothèse du continu vis-à-vis de la théorie ZFC. Combinée avec la technique des modèles de permutation de Fraenkel-Mostowski-Specker, elle a permis également d'établir l'indépendance de l'axiome du choix relativement à ZF.
Image (mathématiques)En mathématiques, la notion d’image est reliée à la notion d’application avec plusieurs définitions distinctes. Étant donné une application : pour tout élément x de E, l’unique élément qui lui est relié dans F est appelé image de x par f, et dans ce cas on dit que x est un antécédent de par f ; l’ensemble des images des éléments de E est appelé de f, ou simplement image de f, et se note ; vignette|f(X) est en jaune.
Category (mathematics)In mathematics, a category (sometimes called an abstract category to distinguish it from a ) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the , whose objects are sets and whose arrows are functions. is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent.
Ensembles disjointsvignette|Trois ensembles disjoints En mathématiques, deux ensembles sont dits disjoints s'ils n'ont pas d'éléments en commun. Par exemple, et sont deux ensembles disjoints. De manière formelle, deux ensembles A et B sont disjoints si leur intersection est l'ensemble vide, c'est-à-dire si (Dans le cas contraire, on dit que A et B « se rencontrent ».) Cette définition s'étend à une famille d'ensembles. Les ensembles d'une famille sont dits disjoints deux à deux ou mutuellement disjoints si deux ensembles quelconques de cette famille sont disjoints.
Dedekind-infinite setIn mathematics, a set A is Dedekind-infinite (named after the German mathematician Richard Dedekind) if some proper subset B of A is equinumerous to A. Explicitly, this means that there exists a bijective function from A onto some proper subset B of A. A set is Dedekind-finite if it is not Dedekind-infinite (i.e., no such bijection exists). Proposed by Dedekind in 1888, Dedekind-infiniteness was the first definition of "infinite" that did not rely on the definition of the natural numbers.
Espace vectorielvignette|Dans un espace vectoriel, on peut additionner deux vecteurs. Par exemple, la somme du vecteur v (en bleu) et w (en rouge) est v + w. On peut aussi multiplier un vecteur, comme le vecteur w que l'on peut multiplier par 2, on obtient alors 2w et la somme devient v + 2w. En mathématiques, plus précisément en algèbre linéaire, un espace vectoriel est un ensemble d'objets, appelés vecteurs, que l'on peut additionner entre eux, et que l'on peut multiplier par un scalaire (pour les étirer ou les rétrécir, les tourner, etc.
Suite (mathématiques)vignette|Exemple de suite : les points bleus représentent ses termes. En mathématiques, une suite est une famille d'éléments — appelés ses « termes » — indexée par les entiers naturels. Une suite finie est une famille indexée par les entiers strictement positifs inférieurs ou égaux à un certain entier, ce dernier étant appelé « longueur » de la suite. Lorsque tous les éléments d'une suite (infinie) appartiennent à un même ensemble , cette suite peut être assimilée à une application de dans .
PréordreEn mathématiques, un préordre est une relation binaire réflexive et transitive. C'est-à-dire que si E est un ensemble, une relation binaire sur E est un préordre lorsque : (réflexivité) ; (transitivité). Un ensemble préordonné est un ensemble muni d'un préordre, ou plus formellement un couple où désigne un ensemble et un préordre sur . Les ordres sont les préordres antisymétriques. Les relations d'équivalence sont les préordres symétriques. Dans un anneau commutatif, la relation « divise » est une relation de préordre.