Loi de LévyEn théorie des probabilités et en statistique, la loi de Lévy, nommée d'après le mathématicien Paul Lévy, est une loi de probabilité continue. En physique, plus précisément en spectroscopie, elle porte le nom de profil de van der Waals et décrit le profil de certaines raies spectrales. Cette loi dépend de deux paramètres : un paramètre de position qui décale le support , et un paramètre d'échelle . Si X suit une loi de Lévy, on notera : .
One- and two-tailed testsIn statistical significance testing, a one-tailed test and a two-tailed test are alternative ways of computing the statistical significance of a parameter inferred from a data set, in terms of a test statistic. A two-tailed test is appropriate if the estimated value is greater or less than a certain range of values, for example, whether a test taker may score above or below a specific range of scores. This method is used for null hypothesis testing and if the estimated value exists in the critical areas, the alternative hypothesis is accepted over the null hypothesis.
Maximum de vraisemblanceEn statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Soient neuf tirages aléatoires x1, ..., x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés.
Ronald Aylmer FisherSir Ronald Aylmer Fisher est un biologiste et statisticien britannique, né à East Finchley le et mort le . Richard Dawkins le considère comme et Anders Hald comme l'homme qui a – . Pour Bradley Efron, il est le statisticien le plus important du . Dans le domaine de la statistique, il introduit de nombreux concepts-clés tels que le maximum de vraisemblance, l'information de Fisher et l'analyse de la variance, les plans d'expériences ou encore la notion de statistique exhaustive.
Statistique exhaustiveLes statistiques exhaustives sont liées à la notion d'information et en particulier à l'information de Fisher. Elles servent entre autres à améliorer des estimateurs grâce à l'usage du théorème de Rao-Blackwell et du théorème de Lehmann-Scheffé. Intuitivement, parler d'une statistique exhaustive revient à dire que cette statistique contient l'ensemble de l'information sur le(s) paramètre(s) de la loi de probabilité. Soit un vecteur d'observation de taille , dont les composantes sont indépendantes et identiquement distribués (iid).
Statistique de testEn statistique, une statistique de test - aussi appelée variable de décision - est une variable aléatoire construite à partir d'un échantillon statistique permettant de formuler une règle de décision pour un test statistique. Cette statistique n'est pas unique, ce qui permet de construire différentes règles de décision et de les comparer à l'aide de la notion de puissance statistique. Il est impératif de connaitre sa loi de probabilité lorsque l'hypothèse nulle est vraie. Sa loi sous l'hypothèse alternative est souvent inconnue.
Q-functionIn statistics, the Q-function is the tail distribution function of the standard normal distribution. In other words, is the probability that a normal (Gaussian) random variable will obtain a value larger than standard deviations. Equivalently, is the probability that a standard normal random variable takes a value larger than . If is a Gaussian random variable with mean and variance , then is standard normal and where . Other definitions of the Q-function, all of which are simple transformations of the normal cumulative distribution function, are also used occasionally.
Quantitative behavioral financeQuantitative behavioral finance is a new discipline that uses mathematical and statistical methodology to understand behavioral biases in conjunction with valuation. The research can be grouped into the following areas: Empirical studies that demonstrate significant deviations from classical theories. Modeling using the concepts of behavioral effects together with the non-classical assumption of the finiteness of assets. Forecasting based on these methods. Studies of experimental asset markets and use of models to forecast experiments.
Mode (statistiques)En statistique, le mode, ou valeur dominante, est la valeur la plus représentée d'une variable quelconque dans une population donnée. Une répartition peut être unimodale ou plurimodale (bimodale, trimodale...), si deux ou plusieurs valeurs de la variable considérée émergent également, voire sans aucun mode (distribution uniforme) si toutes les valeurs de la variable considérée émergent également. Dans le cas d'une répartition en classes d'amplitudes égales, la classe modale désigne celle qui a le plus fort effectif.
Moyenne harmoniqueLa moyenne harmonique H de nombres réels strictement positifs a1, ..., a est définie par : C'est l'inverse de la moyenne arithmétique des inverses des termes. La moyenne harmonique est donc utilisée lorsqu'on veut déterminer un rapport moyen, dans un domaine où il existe des liens de proportionnalité inverses. Dans certains cas, la moyenne harmonique donne la véritable notion de « moyenne ».