Théorie du regretLa théorie du regret ou de l'aversion au regret ou du regret anticipé est un modèle de théorie économique développé simultanément en 1982 par Graham Loomes et Robert Sugden, David E. Bell, et Peter C. Fishburn. Elle permet de développer des modèles de choix dans un contexte d'incertitude qui tiennent compte des effets anticipés du regret. Cette théorie a par la suite été développée par d'autres auteurs. Elle incorpore un terme regret dans la fonction d'utilité qui dépend négativement du produit obtenu et positivement du meilleur produit alternatif l'incertitude étant donnée.
KurtosisEn théorie des probabilités et en statistique, le kurtosis (du nom féminin grec ancien κύρτωσις, « courbure »), aussi traduit par coefficient d’acuité, coefficient d’aplatissement et degré de voussure, est une mesure directe de l’acuité et une mesure indirecte de l'aplatissement de la distribution d’une variable aléatoire réelle. Il existe plusieurs mesures de l'acuité et le kurtosis correspond à la méthode de Pearson. C’est le deuxième des paramètres de forme, avec le coefficient d'asymétrie (les paramètres fondés sur les moments d’ordre 5 et plus n’ont pas de nom propre).
Invariant estimatorIn statistics, the concept of being an invariant estimator is a criterion that can be used to compare the properties of different estimators for the same quantity. It is a way of formalising the idea that an estimator should have certain intuitively appealing qualities. Strictly speaking, "invariant" would mean that the estimates themselves are unchanged when both the measurements and the parameters are transformed in a compatible way, but the meaning has been extended to allow the estimates to change in appropriate ways with such transformations.
Régression sur composantes principalesEn statistiques, la Régression sur composantes principales est une analyse en régression sur les composantes d'une analyse en composantes principales. On utilise souvent cette technique lorsque les variables explicatives sont proches d'être colinéaires, lorsque par exemple le nombre de variables est très supérieur au nombre d'individus.
Loi uniforme discrèteEn théorie des probabilités, une loi discrète uniforme est une loi de probabilité discrète pour laquelle la probabilité de réalisation est identique (équiprobabilité) pour chaque modalité d’un ensemble fini de modalités possibles. C'est le cas par exemple de la loi de la variable aléatoire donnant le résultat du lancer d'une pièce équilibrée, avec deux modalités équiprobables : Pile, et Face. C'est aussi le cas de celle donnant le résultat du jet d'un dé équilibré.
Loi uniforme continueEn théorie des probabilités et en statistiques, les lois uniformes continues forment une famille de lois de probabilité à densité. Une telle loi est caractérisée par la propriété suivante : tous les intervalles de même longueur inclus dans le support de la loi ont la même probabilité. Cela se traduit par le fait que la densité de probabilité d'une loi uniforme continue est constante sur son support. Elles constituent donc une généralisation de la notion d'équiprobabilité dans le cas continu pour des variables aléatoires à densité ; le cas discret étant couvert par les lois uniformes discrètes.
Additive smoothingIn statistics, additive smoothing, also called Laplace smoothing or Lidstone smoothing, is a technique used to smooth categorical data. Given a set of observation counts from a -dimensional multinomial distribution with trials, a "smoothed" version of the counts gives the estimator: where the smoothed count and the "pseudocount" α > 0 is a smoothing parameter. α = 0 corresponds to no smoothing. (This parameter is explained in below.
Cote (probabilités)Dans les jeux de hasard et des statistiques, la cote d'un événement (odds en anglais) est le ratio entre la probabilité que l'événement se produise et la probabilité qu'il ne se produise pas. On l'exprime souvent comme une paire de nombres où le dénominateur de la cote est ramené à 1. En particulier dans les paris et les jeux d'argent, la cote exprime le gain espéré dans le cas où l'événement sur lequel on a misé se réalise ; par exemple, une « cote de 4 contre 1 » traduit le fait qu'on gagnerait 4 fois sa mise.
Uncorrelatedness (probability theory)In probability theory and statistics, two real-valued random variables, , , are said to be uncorrelated if their covariance, , is zero. If two variables are uncorrelated, there is no linear relationship between them. Uncorrelated random variables have a Pearson correlation coefficient, when it exists, of zero, except in the trivial case when either variable has zero variance (is a constant). In this case the correlation is undefined.
TraçabilitéLa traçabilité est la situation dans laquelle on dispose de l'information nécessaire et suffisante pour connaître (éventuellement de façon rétrospective) la composition d'un matériau ou d'un produit du commerce tout au long de sa chaîne de production, de transformation et de distribution. Et ce, en quelques endroits que ce soit, et depuis l'origine première du produit jusqu'à sa fin de vie, soit comme dit l'adage : « du berceau jusqu'à la tombe » pour les produits industriels ou du slogan « de la fourche à la fourchette » pour un produit agricole alimentaire.