Luisa PastoreWith a background in Architectural Engineering, Luisa specialised in sustainable architecture, bioclimatic design and comfort in buildings through a PhD from the University of Palermo (2013) followed by a Post-doc at the Interdisciplinary Laboratory of Performance-Integrated Design (LIPID) of EPFL (2014-2019).She is currently a Scientific Collaborator at the Smart Living Lab - EPFL and professor of Material Behaviour and Architecture and Energy Concept at the Ecole d’Architecture et d’Architecture d’Intérieur – idées House of Lausanne.She also works as Coordinator for the Holcim Foundation for Sustainable Construction where she acts as a liaison between the Academic Committee and the core Management Office of the Foundation. Besides the coordination of the AC's agenda, she supports the organization of events and competitions for the promotion of innovative sustainable design solutions that can tackle today's environmental, socioeconomic, and cultural issues affecting the built environment.Since 2021 she has also joined Amber Lion Partners as Impact and Sustainability Advisor.
Johan Alexandre Philippe GaumeI started my scientific career in 2008 at the Grenoble University in the IRSTEA laboratory where I did my master's thesis on the rheology of dense granular materials using the discrete element method. In the same lab, I followed with a PhD on the numerical modeling of the release depth of extreme avalanches using a combined mechanical-statistical approach and spatial extreme statistics. In 2013 I obtained a postdoc position at the WSL Institute for Snow and Avalanche Research SLF in Davos where I was in charge of developing and applying numerical models to improve the evaluation of avalanche release conditions and thus avalanche forecasting. While my PhD was mostly theoretical and numerical, my postdoc in Davos allowed me to gain a practical expertise by participating in laboratory and field experiments which helped to validate the models I develop. In 2016, I was awarded a SNF grant to work as a research and teaching associate in CRYOS at EPFL on the multiscale modeling of snow and avalanche processes. I developed discrete approaches to model snow micro-structure deformation and failure in order to evaluate constitutive snow models to be used at a larger scale in continuum models. I also developed numerical models for wind-driven snow transport. In 2017, I was a Visiting Scholar at UCLA to work on a Material Point Method (MPM) to simulate both the initiation and propagation of snow avalanches in a unified manner. The UCLA MPM model was initially developed for the Disney movie "Frozen" and has been modified and enriched based on Critical State Soil Mechanics to model the release and flow of slab avalanches. The results of this collaboration have been published in Nature Communications. In 2018, I was awarded the SNF Eccellenza Professorial Fellowship and became professor at EPFL and head of SLAB, the Snow and Avalanche Simulation Laboratory. At SLAB, we study micro-mechanical failure and fracture propagation of porous brittle solids, with applications in snow slab avalanche release. We also simulate avalanche dynamics and flow regime transitions over complex 3D terrain through the development of new models (depth-resolved and depth-averaged) based on MPM.In 2020, I obtained a SPARK grant to develop a new approach to simulate and better understand complex process chains in gravitational mass movements, including permafrost instabilities, rock, snow and ice avalanches and transitions to debris flows.