Règle de HundEn physique atomique, les règles de Hund se réfèrent à un ensemble de règles simples utilisées pour déterminer quel est le terme spectroscopique fondamental de l'atome considéré. Elles furent proposées par Friedrich Hund. En chimie, la première de ces règles est particulièrement importante, et l'on se réfère souvent à elle seule sous le terme de « règle de Hund ». Les trois règles de Hund sont : Pour une configuration électronique donnée, le terme de plus faible énergie est celui maximisant le spin total ( maximal), ainsi que la multiplicité qui égale .
Loi de Moseleyvignette|341px|Enregistrement photographique des raies d'émission caractéristiques du calcium au zinc (Z allant de 20 à 30, sauf le scandium 21), par Moseley (1914) ; on voit la forme générale d'une parabole. vignette|341px|Courbe générale d'une loi en racine carrée. La loi de Moseley est une loi empirique concernant le spectre électromagnétique caractéristique émis ou absorbé par les atomes. Elle relie la fréquence (lettre grecque nu) d'une raie caractéristique au numéro atomique Z de l'atome : où et sont des constantes dépendant du type de raie.
Tensor operatorIn pure and applied mathematics, quantum mechanics and computer graphics, a tensor operator generalizes the notion of operators which are scalars and vectors. A special class of these are spherical tensor operators which apply the notion of the spherical basis and spherical harmonics. The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. The coordinate-free generalization of a tensor operator is known as a representation operator.
Van Vleck paramagnetismIn condensed matter and atomic physics, Van Vleck paramagnetism refers to a positive and temperature-independent contribution to the magnetic susceptibility of a material, derived from second order corrections to the Zeeman interaction. The quantum mechanical theory was developed by John Hasbrouck Van Vleck between the 1920s and the 1930s to explain the magnetic response of gaseous nitric oxide (NO) and of rare-earth salts.
Autler–Townes effectIn spectroscopy, the Autler–Townes effect (also known as AC Stark effect), is a dynamical Stark effect corresponding to the case when an oscillating electric field (e.g., that of a laser) is tuned in resonance (or close) to the transition frequency of a given spectral line, and resulting in a change of the shape of the absorption/emission spectra of that spectral line. The AC Stark effect was discovered in 1955 by American physicists Stanley Autler and Charles Townes.
Histoire de la mécanique quantiquethumb|Le congrès Solvay de 1927, année charnière dans le passage des théories dites semi-classiques aux théories quantiques proprement dites. L'histoire de la mécanique quantique commence traditionnellement avec le problème de la catastrophe ultraviolette et sa résolution en 1900 par l'hypothèse de Max Planck stipulant que tout système atomique irradiant de l'énergie peut être divisé en « éléments d'énergie » discrets liés à la constante h qui, depuis, porte son nom (constante de Planck).
Expérience de Stern et GerlachL'expérience de Stern et Gerlach est une expérience de mécanique quantique, mettant en évidence l'existence du spin. L'expérience a été mise au point par Otto Stern et Walther Gerlach en février 1922. Elle consiste à faire passer des atomes d'argent dans un champ magnétique non uniforme de direction verticale. Les atomes d'argent dans leur état fondamental ayant un moment cinétique orbital nul, leur moment magnétique orbital associé est nul également. Ainsi, le faisceau ne devrait classiquement pas subir l'influence du champ magnétique.
NeutronLe neutron est une particule subatomique de charge électrique nulle. Les neutrons sont présents dans le noyau des atomes, liés avec des protons par l'interaction forte. Alors que le nombre de protons d'un noyau détermine son élément chimique, le nombre de neutrons détermine son isotope. Les neutrons liés dans un noyau atomique sont en général stables mais les neutrons libres sont instables : ils se désintègrent en un peu moins de 15 minutes (880,3 secondes). Les neutrons libres sont produits dans les opérations de fission et de fusion nucléaires.
Moment magnétique de spinEn physique, le 'moment magnétique de spin' représente le moment magnétique associé au moment cinétique de spin (spin) d'une particule. Ce moment magnétique dû au spin est aussi appelé moment magnétique intrinsèque parce que celui-ci est indépendant du moment cinétique orbital. Pour l'électron, possédant un spin , masse et un facteur de Landé , on obtient le « quantum magnétique » suivant, appelé magnéton de Bohr : Le magnéton nucléaire est le magnéton de Bohr mais avec la masse du proton à la place de celle de l'électron et : On associe à une particule de charge , de masse , et de spin donné un moment magnétique de spin : où est un nombre pur, appelé facteur de Landé (1921).
Landé g-factorIn physics, the Landé g-factor is a particular example of a g-factor, namely for an electron with both spin and orbital angular momenta. It is named after Alfred Landé, who first described it in 1921. In atomic physics, the Landé g-factor is a multiplicative term appearing in the expression for the energy levels of an atom in a weak magnetic field. The quantum states of electrons in atomic orbitals are normally degenerate in energy, with these degenerate states all sharing the same angular momentum.