Résumé
In pure and applied mathematics, quantum mechanics and computer graphics, a tensor operator generalizes the notion of operators which are scalars and vectors. A special class of these are spherical tensor operators which apply the notion of the spherical basis and spherical harmonics. The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. The coordinate-free generalization of a tensor operator is known as a representation operator. In quantum mechanics, physical observables that are scalars, vectors, and tensors, must be represented by scalar, vector, and tensor operators, respectively. Whether something is a scalar, vector, or tensor depends on how it is viewed by two observers whose coordinate frames are related to each other by a rotation. Alternatively, one may ask how, for a single observer, a physical quantity transforms if the state of the system is rotated. Consider, for example, a system consisting of a molecule of mass , traveling with a definite center of mass momentum, , in the direction. If we rotate the system by about the axis, the momentum will change to , which is in the direction. The center-of-mass kinetic energy of the molecule will, however, be unchanged at . The kinetic energy is a scalar and the momentum is a vector, and these two quantities must be represented by a scalar and a vector operator, respectively. By the latter in particular, we mean an operator whose expected values in the initial and the rotated states are and . The kinetic energy on the other hand must be represented by a scalar operator, whose expected value must be the same in the initial and the rotated states. In the same way, tensor quantities must be represented by tensor operators. An example of a tensor quantity (of rank two) is the electrical quadrupole moment of the above molecule. Likewise, the octupole and hexadecapole moments would be tensors of rank three and four, respectively.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.