NanorobotiqueLa nanorobotique est un domaine technologique émergent qui crée des machines ou des robots dont les composants sont à l'échelle du nanomètre (10-9 mètres) ou à une échelle proche. Plus précisément, la nanorobotique (par opposition à la microrobotique) désigne la discipline d'ingénierie des nanotechnologies qui consiste à concevoir et à construire des nanorobots, avec des dispositifs dont la taille varie de 0 à 5. Les termes nanorobot, nanoide, nanite, nanomachine ou nanomite ont également été utilisés pour décrire de tels dispositifs actuellement en cours de recherche et développement.
FullerèneUn fullerène est une molécule composée de carbone pouvant prendre une forme géométrique rappelant celle d'une sphère, d'un ellipsoïde, d'un tube (appelé nanotube) ou d'un anneau. Les fullerènes sont similaires au graphite, composé de feuilles d'anneaux hexagonaux liés, mais contenant des anneaux pentagonaux et parfois heptagonaux, ce qui empêche la feuille d'être plate. Les fullerènes sont la troisième forme connue du carbone. Les fullerènes ont été découverts en 1985 par Harold Kroto, Robert Curl et Richard Smalley, ce qui leur valut le prix Nobel de chimie en 1996.
NanobiotechnologieLes nanobiotechnologies sont l'application des nanotechnologies à la biologie et aux sciences de la vie. Les nanobiotechnologies sont un sous-ensemble des nanotechnologies, dont elles partagent l'historique, les approches (bottom-down versus top-down) et les questions éthiques liées aux risques dans un contexte de grande incertitude. Puce à ADN Une puce à ADN est un ensemble de molécules d'ADN fixées en rangées ordonnées sur une petite surface qui peut être du verre, du silicium ou du plastique.
Gelée griseLa gelée grise est le produit d'un scénario hypothétique de fin du monde nanotechnologique, selon lequel un automate nanoscopique autoréplicatif pourrait se reproduire à un rythme effréné en consommant sur son passage toute matière à l'échelle moléculaire, voire atomique. L'accumulation de ces nano-machines formerait une masse amorphe, homogène et incolore (soit une « gelée grise »). Un tel scénario serait un cas d'écophagie (« consommation de l'écosystème ») n'ayant pour limite théorique que la consommation de l'ensemble des ressources terrestres.
Machine autoréplicative300px|vignette|Une forme simple de machine autoréplicative. Une machine autoréplicative est une construction qui est théoriquement capable de fabriquer de manière autonome une copie d'elle-même en utilisant des matières premières prises dans son environnement. Le concept de machines autoréplicatives a été proposé et examiné par , Edward F. Moore, Freeman Dyson, John von Neumann et dans des temps plus récents par Kim Eric Drexler dans son livre sur la nanotechnologie, les Moteurs de Création et par Robert Freitas et Ralph Merkle dans leur examen Kinematic des Machines autoréplicatives qui a fourni la première analyse complète du duplicateur.
BiosenseurUn biosenseur (aussi appelé biocapteur) est un dispositif détecteur, semi-biologique associant trois éléments : l'échantillon à étudier : eau, air, sol, matériel biologique (tissus, micro-organismes, organites, récepteurs cellulaires, enzymes, anticorps, acides nucléiques, organismes génétiquement modifié, ou matériel issu d'OGM, etc.) un élément capteur (éventuellement sous la forme d'une puce électronique) détectant des changements physico-chimiques sous forme de signaux (présence/absence) biochimiques et/ou physiques ou chimique dans un milieu (externe ou interne au corps humain) et émettant un signal biologique.
Molecular recognitionThe term molecular recognition refers to the specific interaction between two or more molecules through noncovalent bonding such as hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, π-π interactions, halogen bonding, or resonant interaction effects. In addition to these direct interactions, solvents can play a dominant indirect role in driving molecular recognition in solution. The host and guest involved in molecular recognition exhibit molecular complementarity.
Molecular nanotechnologyMolecular nanotechnology (MNT) is a technology based on the ability to build structures to complex, atomic specifications by means of mechanosynthesis. This is distinct from nanoscale materials. Based on Richard Feynman's vision of miniature factories using nanomachines to build complex products (including additional nanomachines), this advanced form of nanotechnology (or molecular manufacturing) would make use of positionally-controlled mechanosynthesis guided by molecular machine systems.
Auto-assemblage moléculairedroite|400px|thumb|Un exemple de molécules se liant par liaisons d'hydrogène. L'auto-assemblage moléculaire est le processus par lequel des molécules soi-montant adoptent un agencement sans la direction d'une source extérieure. En général, le terme fait référence à l'auto-assemblage intermoléculaire alors que l'auto-assemblage intramoléculaire prend plus communément le nom de pliage ou de repliement dans le cas de protéines.
Nanoélectroniquevignette|Structure d'un transistor FinFET La nanoélectronique fait référence à l'utilisation des nanotechnologies dans la conception des composants électroniques, tels que les transistors. Bien que le terme de nanotechnologie soit généralement utilisé pour des technologies dont la taille est inférieure à environ , la nanoélectronique concerne des composants si petits qu'il est nécessaire de prendre en compte les interactions interatomiques et les phénomènes quantiques.