Quadruplet premierEn théorie des nombres, un quadruplet premier est une suite de quatre nombres premiers consécutifs de la forme (p, p+2, p+6, p+8). C'est la seule forme possible pour quatre nombres premiers consécutifs d'écarts entre eux minimaux, en dehors des quadruplets (2,3,5,7) et (3,5,7,11). Par exemple (5, 7, 11, 13) et (11, 13, 17, 19) sont des quadruplets premiers. Un quadruplet de nombres premiers impairs consécutifs a un écart entre le plus petit et le plus grand de ces nombres d'au moins 6, il ne peut être de 6 car le seul triplet de nombres premiers consécutifs de la forme (p, p+2, p+4) est (3, 5, 7) (voir triplet premier).
Fonction lemniscatiqueEn mathématiques, les fonctions lemniscatiques sont des fonctions elliptiques liées à la longueur d'arc d'une lemniscate de Bernoulli ; ces fonctions ont beaucoup d'analogies avec les fonctions trigonométriques. Elles ont été étudiées par Giulio Fagnano en 1718 ; leur analyse approfondie, et en particulier la détermination de leurs périodes, a été obtenue par Carl Friedrich Gauss en 1796. Ces fonctions ont un réseau de périodes carré, et sont étroitement reliées à la fonction elliptique de Weierstrass dont les invariants sont g2 = 1 et g3 = 0.
Nombre parfaitEn arithmétique, un nombre parfait est un entier naturel égal à la moitié de la somme de ses diviseurs ou encore à la somme de ses diviseurs stricts. Plus formellement, un nombre parfait n est un entier tel que σ(n) = 2n où σ(n) est la somme des diviseurs positifs de n. Ainsi 6 est un nombre parfait car ses diviseurs entiers sont 1, 2, 3 et 6, et il vérifie bien 2 × 6 = 12 = 1 + 2 + 3 + 6, ou encore 6 = 1 + 2 + 3. Voir la . Dans le Livre IX de ses Éléments, Euclide, au , a démontré que si M = 2 − 1 est premier, alors M(M + 1)/2 = 2(2 – 1) est parfait.
ConjectureEn mathématiques, une conjecture est une assertion pour laquelle on ne connaît pas encore de démonstration, mais que l'on croit fortement être vraie (en l'absence de contre-exemple, ou comme généralisation de résultats démontrés). Une conjecture peut être choisie comme hypothèse ou postulat pour étudier d'autres énoncés. Si une conjecture se révèle indécidable relativement au système d'axiomes dans laquelle elle s'insère, elle peut être érigée en nouvel axiome (ou rejetée par la mise en place d'un nouvel axiome).
Multiplicative group of integers modulo nIn modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n. Hence another name is the group of primitive residue classes modulo n. In the theory of rings, a branch of abstract algebra, it is described as the group of units of the ring of integers modulo n.
Adrien-Marie LegendreAdrien-Marie Legendre, né le à Paris et mort le dans la même ville, est un mathématicien français. Adrien-Marie Legendre naît au sein d'une famille aisée, qui lui permet de mener une vie tranquille consacrée aux mathématiques. Conscients de leur statut social et des limites imposées aux familles roturières, ses parents l'inscrivent dans l'une des meilleures écoles de l'époque, le collège Mazarin. Son professeur, le père Marie, successeur du père Lacaille, remarque les grandes dispositions du jeune élève pour les mathématiques et s'applique à stimuler son talent.
Upper half-planeIn mathematics, the upper half-plane, is the set of points in the Cartesian plane with The lower half-plane is defined similarly, by requiring that be negative instead. Each is an example of two-dimensional half-space. The affine transformations of the upper half-plane include shifts , , and dilations , . Proposition: Let and be semicircles in the upper half-plane with centers on the boundary. Then there is an affine mapping that takes to . Proof: First shift the center of to . Then take and dilate.
Opérateur de HeckeEn mathématiques, en particulier dans la théorie des formes modulaires, un opérateur de Hecke, étudié par Erich Hecke, est un certain type d'opérateur de « moyennage » qui joue un rôle important dans la structure des espaces vectoriels de formes modulaires et de représentations automorphes plus générales. Mordell (1917) a utilisé les opérateurs de Hecke sur les formes modulaires dans un article sur les formes paraboliques spéciales de Ramanujan, bien avant la théorie générale développée par Hecke (1937a, 1937b).
DiviseurLe mot “diviseur” a deux significations en mathématiques. Une division est effectuée à partir d’un “dividende” et d’un “diviseur”, et une fois l’opération terminée, le produit du “quotient” par le diviseur augmenté du “reste” est égal au dividende. En arithmétique, un “diviseur” d'un entier n est un entier dont n est un multiple. Plus formellement, si d et n sont deux entiers, d est un diviseur de n seulement s'il existe un entier k tel que . Ainsi est un diviseur de car .
Fonction êta de DedekindLa fonction êta de Dedekind est une fonction définie sur le demi-plan de Poincaré formé par les nombres complexes de partie imaginaire strictement positive. Pour un tel nombre complexe , on pose et la fonction êta est alors : , en posant . La fonction êta est holomorphe dans le demi-plan supérieur mais n'admet pas de prolongement analytique en dehors de cet ensemble. La fonction êta vérifie les deux équations fonctionnelles et La seconde se généralise : soient des entiers tels que (donc associés à une transformation de Möbius appartenant au groupe modulaire), avec .