Reliability engineering is a sub-discipline of systems engineering that emphasizes the ability of equipment to function without failure. Reliability describes the ability of a system or component to function under stated conditions for a specified period of time. Reliability is closely related to availability, which is typically described as the ability of a component or system to function at a specified moment or interval of time.
The reliability function is theoretically defined as the probability of success at time t, which is denoted R(t). In practice, it is calculated using different techniques and its value ranges between 0 and 1, where 0 indicates no probability of success while 1 indicates definite success. This probability is estimated from detailed (physics of failure) analysis, previous data sets or through reliability testing and reliability modeling. Availability, testability, maintainability and maintenance are often defined as a part of "reliability engineering" in reliability programs. Reliability often plays the key role in the cost-effectiveness of systems.
Reliability engineering deals with the prediction, prevention and management of high levels of "lifetime" engineering uncertainty and risks of failure. Although stochastic parameters define and affect reliability, reliability is not only achieved by mathematics and statistics. "Nearly all teaching and literature on the subject emphasize these aspects, and ignore the reality that the ranges of uncertainty involved largely invalidate quantitative methods for prediction and measurement." For example, it is easy to represent "probability of failure" as a symbol or value in an equation, but it is almost impossible to predict its true magnitude in practice, which is massively multivariate, so having the equation for reliability does not begin to equal having an accurate predictive measurement of reliability.
Reliability engineering relates closely to Quality Engineering, safety engineering and system safety, in that they use common methods for their analysis and may require input from each other.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
La période de retour, ou temps de retour, est la durée moyenne au cours de laquelle, statistiquement un événement d’une même intensité se reproduit. Ce terme est très utilisé pour caractériser les risques naturels comme les tremblements de terre, la crue ou l'inondation, la tempête, l'orage, etc., selon le paramètre d'intensité correspondant adéquat magnitude d'un séisme, débit (ou épaisseur de lame d'eau) d'un cours d'eau, vitesse du vent, quantité de pluie, etc.
thumb|right|350px|Exemple de courbe de fiabilité: en vert les incidents aléatoires, en rouge la courbe liée au rodage, en jaune la courbe d'usure, en bleu la courbe en baignoire résultante. En ingénierie la courbe en baignoire est une représentation classique de la probabilité d'incidents pour des équipements ou des systèmes.
Le mode de défaillance est la forme observable du dysfonctionnement d’un produit ou d’une opération du système étudié. Il sert de base de travail dans l'élaboration d'une analyse de type AMDEC Un mode de défaillance doit répondre aux caractéristiques suivantes : Il est relatif à la fonction étudiée. Il décrit la manière dont le système ne remplit plus sa fonction. Il s'exprime en termes techniques précis (court-circuit...) Il existe 5 modes génériques de défaillance : perte de la fonction fonctionnement in
This advanced graduate course teaches the key design principles underlying successful computer and communication systems, and shows how to solve real problems with ideas, techniques, and algorithms fr
This course deals with the main aspects of seismic design and assessment of buildings including conceptual design. It covers different structural design and evaluation philosophies for new and existin
Actif dans les structures composites, la technologie d'auto-guérison et l'économie circulaire. CompPair développe des composites guérissables et durables inspirés par la nature, permettant une auto-réparation rapide des structures composites, réduisant les coûts d'entretien et favorisant une économie circulaire.
Active dans la détection des défauts, les fils fins et le contrôle de la qualité. SensOptic se spécialise dans les équipements de détection de défauts pour fils et filaments fins, offrant des systèmes de surveillance automatique pour améliorer la qualité du produit et optimiser les processus de fabrication.
Explore l'évaluation de la fiabilité dans l'automatisation industrielle, en mettant l'accent sur la fiabilité, les taux de défaillance, les tests de résistance, les défaillances matérielles et les modèles Markov.
Explore la fatigue et la résistance aux fractures dans MicroNanosystems, couvrant les charges fluctuantes, les limites d'endurance et les effets de température.
La gestion des déchets, une des branches de la rudologie appliquée, regroupe la collecte, le négoce et courtage, le transport, le (le traitement des rebuts), la réutilisation ou l'élimination des déchets, habituellement ceux issus des activités humaines. Cette gestion vise à réduire leurs effets sur la santé humaine et environnementale et le cadre de vie. Un accent est mis depuis quelques décennies sur la réduction de l'effet des déchets sur la nature et l'environnement et sur leur valorisation dans une perspective d'économie circulaire.
thumb|Exemple de courbe de survie. L'analyse de (la) survie est une branche des statistiques qui cherche à modéliser le temps restant avant la mort pour des organismes biologiques (l'espérance de vie) ou le temps restant avant l'échec ou la panne dans les systèmes artificiels, ce que l'on représente graphiquement sous la forme d'une courbe de survie. On parle aussi d'analyse de la fiabilité en ingénierie, d'analyse de la durée en économie ou d'analyse de l'histoire d'événements en sociologie.
Polymer chemistry is a sub-discipline of chemistry that focuses on the structures of chemicals, chemical synthesis, and chemical and physical properties of polymers and macromolecules. The principles and methods used within polymer chemistry are also applicable through a wide range of other chemistry sub-disciplines like organic chemistry, analytical chemistry, and physical chemistry. Many materials have polymeric structures, from fully inorganic metals and ceramics to DNA and other biological molecules.
Lightweight modules are essential for next-generation vehicle-integrated photovoltaic (VIPV) applications, such as solar-powered cars, allowing integration of solar cells beyond the roof, and on the hood, boot and body panels, and thereby extending the dri ...
Reinforced concrete flat slabs consist of a continuous, thin concrete plate that rests on a grid of columns. The supporting surface of the columns is very small compared to the floor plan dimensions, leading to concentrations of shear forces near the colum ...
EPFL2024
, ,
Digital twins are virtual models of physical objects or systems that enable real-time monitoring and analysis. In the field of stone masonry buildings, digital twins can be used to assess damage, predict maintenance needs, and opti- mize building performanc ...