Fernando Porté AgelFERNANDO PORTÉ AGEL Professor Director, Wind Engineering and Renewable Energy Laboratory (WIRE) School of Architecture, Civil and Environmental Engineering (ENAC) École Polytechnique Fédérale de Lausanne (EPFL) e-mail: fernando.porte-agel@epfl.ch RESEARCH INTERESTS Environmental fluid mechanics. Computational fluid dynamics. Atmospheric boundary layers. Turbulence. Large-eddy simulation. Wind energy. Wind engineering. Renewable energy. EDUCATION Ph.D. 1999 Johns Hopkins University, Environmental Engineering M.Sc. 1995 Hydrologic Engineering, IHE - Delft, The Netherlands B.S. 1992 Universidad Politécnica de Cataluña, Spain ACADEMIC POSITIONS 2010-present: Full Professor, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland 2005-2009: Associate Professor, St. Anthony Falls Laboratory and Department of Civil Engineering, University of Minnesota, Minneapolis, MN, USA 2000-2005: Assistant Professor, St. Anthony Falls Laboratory, Department of Civil Engineering, University of Minnesota, Minneapolis, MN, USA AWARDS AND FELLOWSHIPS McKnight Presidential Fellow (2006-2009), University of Minnesota, USA McKnight Land-Grant Professorship (2003-2005), University of Minnesota, USA NASA Young Investigator Award (2001-2004), USA NSF CAREER Award (2001-2006), (Division of Earth Sciences Hydrological Sciences), USA Outstanding Student Paper Award: Hydrology Section, Fall Meeting of the American Geophysical Union; San Francisco, 1998. Research Award (1995-1997): La Caixa fellowship program; Barcelona, Spain. Research Award (1993-1995): Dutch Ministry of Foreign Affairs fellowship. Research Award (1990-1993): Spanish Civil Engineering Association. Alfredo PasquarelloAlfredo Pasquarello effectue ses études en physique à l'Ecole normale supérieure de Pise et à l'Université de Pise et obtient leurs diplômes respectifs en 1986. Il obtient le titre de Docteur ès sciences à l'EPFL en 1991 avec une thèse portant sur les transitions à plusieurs photons dans les solides. Ensuite, il effectue des recherches post-doctorales aux Laboratoires Bell (Murray Hill, New Jersey) sur les propriétés magnétiques des fullerènes de carbone. En 1993, il rejoint l'Institut romand de recherche numérique en physique des matériaux (IRRMA), où sa recherche porte sur des méthodes de simulation ab initio. En 1998, le Prix Latsis de l'EPFL lui est decerné pour son travail de recherche portant sur les matériaux à base de silice désordonnée. Bénéficiant de plusieurs subsides du Fonds National, il constitue ensuite sa propre équipe de recherche à l'IRRMA. En juillet 2003, il est nommé Professeur en Physique théorique de la matière condensée à l'EPFL. Actuellement, il dirige la Chaire de simulation à l'échelle atomique.
Paul MuraltPaul Muralt received a diploma in experimental physics in 1978 at the Swiss Federal Institute of Technology ETH in Zurich. He accomplished his Ph.D. thesis in the field of commensurate-incommensurate phase transitions at the Solid State Laboratory of ETH. In the years 1984 and 1985 he held a post doctoral position at the IBM Research Laboratory in Zurich where he pioneered the application of scanning tunneling microscopy to surface potential imaging. In 1987, after a stay at the Free University of Berlin, he joined the Balzers group in Liechtenstein. He specialized in sputter deposition techniques, and managed since 1991 a department for development and applications of Physical Vapor Deposition and PECVD processes. In 1993, he joined the Ceramics Laboratory of EPFL in Lausanne. AS group leader for thin films and MEMS devices, he specialized in piezoelectric and pyroelectric MEMS with mostly Pb(Zr,Ti)O3 and AlN thin film. His research interests are in thin film growth in general, and more specifically in property assessment of small ferroelectric structures, in integration issues of ferroelectric and other polar materials, property-microstructure relationships, and applications of polar materials in semiconductor and micro-electro-mechanical devices. More recently he extended his interests to oxide thin films of ionic conductors. The focus in piezoelectric thin films was directed towards AlN-ScN alloys. He gives lectures in thin film processing, micro fabrication, and surface analysis. He authored or co-authored more than 230 scientific articles. He became Fellow of IEEE in 2013. In 2005, he received an outstanding achievement award at the International Symposium on Integrated Ferroelectrics (ISIF), and in 2016 the B.C. Sawyer Memorial award.
Chairman of the International Workshops on Piezoelectric MEMS(http://www.piezomems2011.org/) Federica Sandronedès 2008: Ingénieur responsable de géstion et maintenance des tunnels CFF dès 2007: Assistante au LMR pour les cours "Tunnel Engineering" et "Underground Construction Technology" 2004-2008: Doctorante at LMR-EPFL Titre de Docteur ès Sciences EPFL reçu en fév. 2008 avec une thèse intitulée "Analysis of pathologies and long term behaviour of the Swiss National Road tunnels" 2003: Assistante au Départment des Géoressources et du Territoire du Politecnico di Torino (TUSC) 2003: Diplomée au Politecnico di Torino Laurea in Ingegneria per l''Ambiente e il Territorio (indirizzo: Geotecnologie) Travail de fin d''étude: Remise en état et rénovation d''un tunnel ferroviaire âgé et endommagé
Francesco StellacciFrancesco Stellacci graduated in Materials Engineering at the Politecnico di Milano in 1998 with a thesis on photochromic polymers with Prof. Giuseppe Zerbi and Mariacarla Gallazzi. In 1999 he moved to the Chemistry Department of the University of Arizona for as a post-doc in the group of Joe Perry in close collaboration with the group of Seth Marder. In 2002 he moved to the Department of Materials Science and Engineering at the Massachusetts Institute of Technology as an assistant professor. He was then promoted to associate without (2006) and with tenure (2009). In 2010 he moved to the Institute of Materials at EPFL as a full Professor. He holds the Alcan EP Chair. Francesco was one of the recipients of the Technology Review TR35 "35 Innovator under 35" award in 2005, and the Popular Science Magazine "Brilliant 10" award in 2007. He has been a Packard Fellow starting 2005.
Johan Alexandre Philippe GaumeI started my scientific career in 2008 at the Grenoble University in the IRSTEA laboratory where I did my master's thesis on the rheology of dense granular materials using the discrete element method. In the same lab, I followed with a PhD on the numerical modeling of the release depth of extreme avalanches using a combined mechanical-statistical approach and spatial extreme statistics. In 2013 I obtained a postdoc position at the WSL Institute for Snow and Avalanche Research SLF in Davos where I was in charge of developing and applying numerical models to improve the evaluation of avalanche release conditions and thus avalanche forecasting. While my PhD was mostly theoretical and numerical, my postdoc in Davos allowed me to gain a practical expertise by participating in laboratory and field experiments which helped to validate the models I develop. In 2016, I was awarded a SNF grant to work as a research and teaching associate in CRYOS at EPFL on the multiscale modeling of snow and avalanche processes. I developed discrete approaches to model snow micro-structure deformation and failure in order to evaluate constitutive snow models to be used at a larger scale in continuum models. I also developed numerical models for wind-driven snow transport. In 2017, I was a Visiting Scholar at UCLA to work on a Material Point Method (MPM) to simulate both the initiation and propagation of snow avalanches in a unified manner. The UCLA MPM model was initially developed for the Disney movie "Frozen" and has been modified and enriched based on Critical State Soil Mechanics to model the release and flow of slab avalanches. The results of this collaboration have been published in Nature Communications. In 2018, I was awarded the SNF Eccellenza Professorial Fellowship and became professor at EPFL and head of SLAB, the Snow and Avalanche Simulation Laboratory. At SLAB, we study micro-mechanical failure and fracture propagation of porous brittle solids, with applications in snow slab avalanche release. We also simulate avalanche dynamics and flow regime transitions over complex 3D terrain through the development of new models (depth-resolved and depth-averaged) based on MPM.In 2020, I obtained a SPARK grant to develop a new approach to simulate and better understand complex process chains in gravitational mass movements, including permafrost instabilities, rock, snow and ice avalanches and transitions to debris flows.