Théorie quantique des champsvignette|296x296px|Ce diagramme de Feynman représente l'annihilation d'un électron et d'un positron, qui produit un photon (représenté par une ligne ondulée bleue). Ce photon se décompose en une paire quark-antiquark, puis l'antiquark émet un gluon (représenté par la courbe verte). Ce type de diagramme permet à la fois de représenter approximativement les processus physiques mais également de calculer précisément leurs propriétés, comme la section efficace de collision.
Statistique mathématiquevignette|Une régression linéaire. Les statistiques, dans le sens populaire du terme, traitent à l'aide des mathématiques l'étude de groupe d'une population. En statistique descriptive, on se contente de décrire un échantillon à partir de grandeurs comme la moyenne, la médiane, l'écart type, la proportion, la corrélation, etc. C'est souvent la technique qui est utilisée dans les recensements. Dans un sens plus large, la théorie statistique est utilisée en recherche dans un but inférentiel.
Physical cosmologyLa cosmologie quantique est une branche spéculative de la cosmologie qui vise à décrire les premiers instants de l'Univers en le considérant comme un objet quantique, c'est-à-dire décrit par les lois de la mécanique quantique et de la théorie quantique des champs. Cette discipline peut être vue comme une branche de la gravité quantique, quoique la connaissance d'une théorie quantique de la gravitation ne soit pas indispensable pour certains résultats de la cosmologie quantique.
MétaphysiqueLa métaphysique est la branche de la philosophie qui étudie la nature fondamentale de la réalité. Elle s'intéresse à des concepts tels que l'être et l'identité, l'espace et le temps, la causalité, la nécessité et la possibilité. Elle comprend notamment des questions sur la nature de la conscience et la relation entre l'esprit et la matière, ou entre la substance et l'attribut. La métaphysique est considérée comme l'une des quatre principales branches de la philosophie, avec l'épistémologie (ou théorie de la connaissance, ou encore gnoséologie en un sens plus large), la logique et l'éthique.
CartographieLa cartographie est la réalisation et l'étude des cartes géographiques et géologiques. Elle est très dépendante de la géodésie, science qui s'efforce de décrire, mesurer et rendre compte de la forme et des dimensions de la Terre. Le principe majeur de la cartographie est la représentation de données sur un support réduit représentant un espace généralement tenu pour réel. L'objectif de la carte, c'est une représentation concise et efficace, la simplification de phénomènes complexes (politiques, économiques, sociaux, etc.
Théorie des nombresTraditionnellement, la théorie des nombres est une branche des mathématiques qui s'occupe des propriétés des nombres entiers (qu'ils soient entiers naturels ou entiers relatifs). Plus généralement, le champ d'étude de cette théorie concerne une large classe de problèmes qui proviennent naturellement de l'étude des entiers. La théorie des nombres occupe une place particulière en mathématiques, à la fois par ses connexions avec de nombreux autres domaines, et par la fascination qu'exercent ses théorèmes et ses problèmes ouverts, dont les énoncés sont souvent faciles à comprendre, même pour les non-mathématiciens.
Histoire des sciencesL'histoire des sciences est l’étude de l'évolution de la connaissance scientifique. La science, en tant que corpus de connaissances, mais également comme manière d'aborder et de comprendre le monde, s'est constituée progressivement depuis plusieurs millénaires. C'est aux époques protohistoriques qu'ont commencé à se développer les spéculations intellectuelles visant à élucider les mystères de l'univers. L'histoire des sciences est une discipline qui étudie le mouvement progressif de transformation de ces spéculations et l'accumulation des connaissances qui l'accompagne.
Théorie analytique des nombresdroite|vignette|La fonction zêta de Riemann ζ(s) dans le plan complexe. La couleur d'un point s code la valeur de ζ(s) : les couleurs proches du noir indiquent des valeurs proches de zéro, alors que la teinte code l'argument de la valeur. En mathématiques, la théorie analytique des nombres est une branche de la théorie des nombres qui utilise des méthodes d'analyse mathématique pour résoudre des problèmes concernant les nombres entiers.
AlgèbreL'algèbre (de l’arabe الجبر, al-jabr) est une branche des mathématiques qui permet d'exprimer les propriétés des opérations et le traitement des équations et aboutit à l'étude des structures algébriques. Selon l’époque et le niveau d’études considérés, elle peut être décrite comme : une arithmétique généralisée, étendant à différents objets ou grandeurs les opérations usuelles sur les nombres ; la théorie des équations et des polynômes ; depuis le début du , l’étude des structures algébriques (on parle d'algèbre générale ou abstraite).
Analyse (mathématiques)L'analyse (du grec , délier, examiner en détail, résoudre) a pour point de départ la formulation rigoureuse du calcul infinitésimal. C'est la branche des mathématiques qui traite explicitement de la notion de limite, que ce soit la limite d'une suite ou la limite d'une fonction. Elle inclut également des notions comme la continuité, la dérivation et l'intégration. Ces notions sont étudiées dans le contexte des nombres réels ou des nombres complexes.