Entrelacs de HopfEn mathématiques, l'entrelacs de Hopf est un des modèles les plus simples étudiés en théorie des nœuds. C'est l'entrelacs non trivial et non connexe le plus simple. Il porte le nom du mathématicien Heinz Hopf. L'entrelacs de Hopf est formé par deux cercles ayant un nombre d'enlacement de plus ou moins 1. On l'obtient par exemple en considérant deux cercles situés dans des plans orthogonaux, chacun passant par le centre de l'autre. Dans la fibration de Hopf, deux fibres distinctes forment un entrelacs de Hopf dans la sphère .
Espace précompactEn topologie, une branche des mathématiques, un espace métrique E est précompact si, pour tout ε > 0, on peut recouvrir E par un nombre fini de boules de rayon ε. La propriété principale est qu'un espace métrique est compact si et seulement s'il est précompact et complet. La notion de précompacité et ses propriétés se généralisent aux espaces uniformes. Soit E un espace métrique. Si l'une des trois propriétés suivantes est vérifiée, alors toutes trois le sont et E est dit précompact.
Voisinage (mathématiques)En mathématiques, dans un espace topologique, un voisinage d'un point est une partie de l'espace qui contient un ouvert qui comprend ce point. C'est une notion centrale dans la description d'un espace topologique. Par opposition aux voisinages, les ensembles ouverts permettent de définir élégamment des propriétés globales comme la continuité en tout point. En revanche, pour les propriétés locales comme la continuité en un point donné ou la limite, la notion de voisinage (et le formalisme correspondant) est plus adaptée.
Théorie des nœudsthumb|right|Représentation d’un nœud torique de type (3, 8). La théorie des nœuds est une branche de la topologie qui consiste en l'étude mathématique de courbes présentant des liaisons avec elles-mêmes, un « bout de ficelle » idéalisé en lacets. Elle est donc très proche de la théorie des tresses qui comporte plusieurs chemins ou « bouts de ficelle ». left|thumb|Nœuds triviaux La théorie des nœuds a commencé vers 1860 et avec des travaux de Carl Friedrich Gauss liés à l'électromagnétisme.
Disjoint union (topology)In general topology and related areas of mathematics, the disjoint union (also called the direct sum, free union, free sum, topological sum, or coproduct) of a family of topological spaces is a space formed by equipping the disjoint union of the underlying sets with a natural topology called the disjoint union topology. Roughly speaking, in the disjoint union the given spaces are considered as part of a single new space where each looks as it would alone and they are isolated from each other.
Puissance du continuEn mathématiques, plus précisément en théorie des ensembles, on dit qu'un ensemble E a la puissance du continu (ou parfois le cardinal du continu) s'il est équipotent à l'ensemble R des nombres réels, c'est-à-dire s'il existe une bijection de E dans R. Le cardinal de R est parfois noté , en référence au , nom donné à l'ensemble ordonné (R, ≤). Cet ordre (et a fortiori le cardinal de l'ensemble sous-jacent) est entièrement déterminé (à isomorphisme près) par quelques propriétés classiques.
Stalk (sheaf)The stalk of a sheaf is a mathematical construction capturing the behaviour of a sheaf around a given point. Sheaves are defined on open sets, but the underlying topological space consists of points. It is reasonable to attempt to isolate the behavior of a sheaf at a single fixed point of . Conceptually speaking, we do this by looking at small neighborhoods of the point. If we look at a sufficiently small neighborhood of , the behavior of the sheaf on that small neighborhood should be the same as the behavior of at that point.
Boule (topologie)En topologie, une boule est un type de voisinage particulier dans un espace métrique. Le nom évoque, à juste titre, la boule solide dans l'espace usuel à trois dimensions, mais la notion se généralise entre autres à des espaces de dimension plus grande (ou plus petite) ou encore de norme non euclidienne. Dans ce cas, une boule peut ne pas être « ronde » au sens usuel du terme.
Infiniment petitLes infinitésimaux (ou infiniment petits) ont été utilisés pour exprimer l'idée d'objets si petits qu'il n'y a pas moyen de les voir ou de les mesurer. Le mot vient de infinitesimus (latin du ), ce qui signifiait à l'origine l'élément dans une série. Selon la notation de Leibniz, si x est une quantité, dx et Δx peuvent représenter une quantité infinitésimale de x. Dans le langage courant, un objet infiniment petit est un objet qui est plus petit que toute mesure possible, donc non pas d'une taille zéro, mais si petit qu'il ne peut être distingué de zéro par aucun moyen disponible.
SymétrisationEn mathématiques, la symétrisation d'un monoïde est une opération de construction d'un groupe dans lequel se projette le monoïde initial, de manière naturelle. On parle parfois de groupe de Grothendieck du monoïde considéré. Ce procédé est notamment appliqué pour construire l'ensemble des entiers relatifs à partir de celui des entiers naturels. Si le monoïde de départ est muni d'une seconde loi de composition qui en fait un semi-anneau commutatif, son symétrisé est un anneau commutatif.